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Abstract—The objective of this study is to develop a socially-
intelligent service team comprised of multiple robots with so-
phisticated sonic interaction capabilities that aims to transpar-
ently collaborate towards efficient and robust monitoring by
close interaction.In the distributed scenario proposed in this
study, the robots share any acoustic data extracted from the
environment and act in- sync with the events occurring in
their living environment in order to provide potential means
for efficient monitoring and decision-making within a typical
home environment. Though, each robot acts as an individual
recognizer using a novel emotionally-enriched word recognition
system, the final decision is social in nature and is followed by
all. Moreover, the social decision stage triggers actions that are
algorithmically distributed among the robots’A population and
enhances the overall approach with the potential advantages of
the team work within specific communities through collaboration.

I. INTRODUCTION

Growing numbers of elderly people have led the research
community to find ways to aid the elderly in doing sev-
eral everyday tasks, which are usually hard to accomplish
by them. Considering the high cost raised for employing
caretakers, robots may be preferred for this kind of tasks.
Since the robots behavior is algorithmic in nature, they do
not get bored and they do not get tired. Hence, they can be
considered as attractive alternatives for caretaking services.
However, one can note an increasing research interest in the
use of robots for human caretaking environments [1]. The
implementation of autonomous caretaking services is severely
restricted by several challenges, which significantly limit the
interaction of the robots and the human. For example, a highly
complicated and time-critical interaction service is needed to
accomplish efficient communication in real-time between the
machine and the human [2]. This communication can be visual
(i.e. through gestures) or aural (performed through common
speech). Therefore, a special attention should be given to
improve the communication skills of the robots involved.

Focusing on verbal communication only, apart from the
content of the speech itself, an efficient communication frame-
work should also include affective conditioning. It is well-
known that speech conveys emotions [3]. Human listeners are
able to perceive them and derive a combinative, emotionally-
enriched information outcome [4]. This is a significant aspect
that may enhance the human-machine interaction framework,

provide additional means for securing the correctness of the
decisions that a machine should take and allow for a human-
robot interaction that tends to be a social relation [5]. Apart
from the above communication capabilities enhancements,
autonomous multi-robot service teams are still an unexplored
area. Although multi-robot security teams have been proposed,
e.g., [6], to the best of our knowledge, there exists no work
on multi-robot service teams designed for caretaking services.
To address this need, in this paper, we propose a multi-robot
service team with sophisticated interaction capabilities. More
specifically, in the proposed scenario, the robots share any
acoustic data extracted from their environment to collaborate
towards efficient and robust servicing by close interaction. In
a distributed fashion, the robots act in-sync with the acous-
tic events occurring in the environment. Each one of them
performs an assessment of the meaning and the emotional
content of the speech, as well as of the sound characteristics.
The final decision, on which is the appropriate action and
which robot should perform it, is taken centrally by the higher
ranked robot which has also available other information like
the locations of both robots and human/s, special abilities of
each robot (if any), etc. This achieved by three sequentially
employed linguistic (Mamdani) fuzzy inference systems [7]
and references therein. For the purposes of this work, we
have considered equivalent multi-functional robots, instead
of using several robots with different capabilities, while the
acoustic events considered are limited to emotionally-enriched
discrete speech events, i.e. words or verbal commands. Ad-
ditional sound events can be considered (for example glass-
breaking or human falling sounds) and potentially combined
with the outcome of the affective sound interaction path.
However, this investigation is considered to be out of the
scope of this work, which aims to primarily investigate the
potential impact and efficiency of advanced socially distributed
intelligence provided though modern means of emotionally-
enhanced acoustic interaction. The remainder of this paper is
organized as follows. I Section II, related work on socially-
intelligent service robots is summarized. Section III presents
the overall system architecture. Overview of simulation results
are presented in Section IV. Finally, the paper is concluded in
Section V.

II. RELATED WORK

The increasing interest on service robots has led the
academia to study on designing robots having communication



skills. For the service robots to be used in home environments
to care for the elderly, specific communication requirements
should be met to enable the robots be socially-intelligent, one
of the most important requirements of service robots. This
section discusses both the interaction systems proposed for
single-robot and multi-robot teams and the distributed control
systems in the literature. Situational awareness is one of the
key requirements of interactive service robots. Luo and Chang
in [8] explain the details of two different robots called Chung-
Cheng I and Security Warrior. Both robots utilize multi-sensor
fusion processes for the detection and recognition of people.
Basically, multi-sensor fusion and integration is the synergistic
combination of data from multiple sensors to achieve infer-
ences not feasible from each individual sensor operating sep-
arately [8]. Multi-sensor fusion brings several advantages and
is used in many military and non-military applications. One
of the best applications of multi-sensor fusion is simultaneous
localization and mapping (SLAM) processes. SLAM is the key
of autonomous robot systems and enables the robots to localize
themselves and at the same time map the environment. In [9],
the authors propose an intelligent service robot which creates
an information-enriched map constructed by the environment
geometry from a laser range finder and a camera. A similar
work which explains the details of a navigation framework
for multiple autonomous robots is explained in [10]. The
proposed navigation framework was implemented in [10] on
real robots called “Robox” and the robots operated during the
Expo.02 exhibition. Different from these studies, human-robot
interaction (HRI) skills are needed for most service robots.
The work in [11] proposes a catering service robot to be used
in restaurants. The robot is integrated with multimodal human
computer interaction techniques and is supposed to take the
place of restaurant staffs.

HRI is very important for service robots and enables them
to understand the requirements of their users and identify
where the users are. For the humans, voice is the most straight-
forward way to communicate. Therefore, automatic speech
recognition systems should be integrated into service robots
designed for home uses. A combined sound source localization
and stereo vision system for service robots is proposed in [12].
A further step towards a sophisticated socially-intelligent robot
is the ability to recognize emotional states of the human.
The work proposed in [13] is a real-time emotion recogni-
tion system combined with a complicated recognition engine
which recognizes facial expressions and categorizes them into
one of seven different emotional states: happiness, sadness,
fear,disgust, anger, surprise, and neutrality. In some scenarios,
such as the one given in [14], other assistive technologies
beyond recognition systems may be required. The work in [14]
proposes a robotic agent that understands users’ wishes and
gives their possible answers on a social network platform
by utilizing natural language processing (NLP) and metadata
analysis. KSERA, a system consisting of an intelligent home
environment, which incorporates smart home functionalities,
a sensor-data-based inference module capable of detecting
critical conditions and alarm raising functionality, is proposed
in [15]. KSERA is complemented by a socially assistive robot.
The robot is used as primary user interface for interaction with
the users. The usability of the system was verified by the trial
participants in Austria and Israel. Brian 2.0, a socially assistive
robot to be used as a therapeutic aid designed to maintain,

and improve the residual social and cognitive functioning in
people with dementia, is proposed in [16]. Brian 2.0 is able
to engage the people with dementia in the activity by means
of task assistance,encouragement, reinforcement, and celebra-
tion. The work in [17] addresses several aspects of a robot
called “CompanionAble” which was developed as part of the
European FP7 project. CompanionAble is a socially assistive
robot for elderly people with mild cognitive impairment (MCI)
living alone at home.A similar system is proposed in [18]. This
work aims to develop a socially intelligent robot, which may
support diabetic patients to cope with their illness better by
providing them guidelines. Different from the abovementioned
socially assistive robots, a good discussion of service robots
with manipulation skills to help the disabled/limited people is
given in [19].

In this work a hierarchically organized team of service
robots is proposed. Although all robots have equivalent capa-
bilities, there is a hierarchical organization. The higher ranked
robot takes the decisions. In case of failure of the higher
ranked robot, the second in hierarchy takes over and so on.
The action that should be taken in each situation by the team
of robots is primarily determined by the answer to two crucial
questions: (i) “what should be done?”, and(ii) “who should
do it?”. The answer to both questions is given by a two-
level distributed decision making system primarily based on
sound characteristics, speech meaning and emotion as well as
localization data.

III. SYSTEM ARCHITECTURE

The proposed system consists of a team of multifunctional
robots of the same capabilities, and acting co-operatively, and
two modules responsible for process the information presented
to the robots. Each one of the robots is equipped with two
acoustic sensors, a local signal processing unit, a localization
system, a wireless transceiver for the communication among
them, and a GSM modem for SMS messages. During the set-
up of the robots’ team a hierarchy among the team members
is randomly set, since all robots are in principle equivalent.
The coordination of their team is a task of the higher ranked
available robot which emits periodically a beacon signal to
denote its presence. If the latter signal is not emitted as
expected for two periods, then the second in the hierarchy robot
takes over the coordination tasks, and so on. The identification
of the positions of both human/s and robots is performed by
a trilateration-based localization scheme with several smart
wireless sensor nodes located at predetermined fixed posi-
tions and a group of mobile robots. In following subsection
are presented in detail the above mentioned modules, i.e.
Emotionally-Enriched Word Recognition (EEWR) System and
the Socially-Enriched Decision-making (SEDM) System.

A. The Emotionally-Enriched Word Recognition System

The EEWR system is able to recognize a finite set of
speaker independent spoken words, enhanced with the ability
to categorize them based on the human speaker stress level.
The latter represents a significant affective component for
applications targeted to automated home monitoring, since it
may provide efficient means for prioritization of the recognized
verbal objects. In general, affective speech recognition is based
on the extraction of voice-signal technical features, their direct



Table I. EMOTION PROFILES FOR ANGER, FEAR, SADNESS AND
HAPPINESS COMPARED TO NORMAL SPEECH

Emotions Acoustic Cue
F0 SR E

Anger Increase Increase Increase
Happiness Increase Decrease Increase
Sadness Decrease Decrease Decrease
Fear Increase Increase Increase

comparison to appropriately defined thresholds, derived by
categorization algorithms applied on a ground-truth data set,
and the mapping of results to emotions employing an affective
model. Many of such models already exist in the literature,
ranging from discrete up to dimensional ones [20]. Typical
emotion-recognition algorithms usually employ the voice fun-
damental frequency F0 (i.e. the pitch) as the fundamental
acoustic cue [21], while additional cues may be considered in
parallel, such as the speech rate SR (or the speech tempo) [22]
and the instantaneous voice energy E [23]. Different ranges
of these cues values are related to different emotions, forming
the so-called acoustic/emotions’ profiles. Table I illustrates
some indicative profiles derived from the literature for typical
emotions, such as anger, fear, sadness and happiness, compared
to emotionally neutral (or normal) speech.

Many existing research works employ the Arousal-Valence
(AV) affective model. Since stress is not directly included in
the discrete emotion set, one can consider the same acoustic
profile for it, provided that stress is a common component
of both aforementioned emotions, especially under emergency
situations particularly considered in this work. The stress
recognition process employed in this work was initially in-
troduced by the work carried out in [24]. We hereby provide a
brief overview of its functional characteristics and architecture.
For the interested reader, a detailed analysis is included in [24].
It particularly consists of three modules: a) the Voice Activity
Detector (VAD), b) the Voice Keyword Recognizer (VKR)
and c) the Voice Stress Classifier (VSC). The VAD module
provides voice-active or voice-inactive estimates during the
real-time capturing of the environmental sound. Voice-active
recording periods are fed to the VKR subsystem which indi-
cates the recognised word. During the VKR training session,
the results provided were stored in the system internal storage
(flash memory). The small size of the available memory in the
embedded, DSP-free platform employed represents a major
limitation for the selection of the training data set volume.
Thus, in order to allow the increment of the recognized
words number, only normal (unstressed) words were used as
training data. The VSC module is responsible for providing
stress or no-stress estimates for the words recognized by the
VKR. For this reason, it calculates the acoustic cues presented
in Table I using the waveforms of a recognized word. If
all these values exceed the corresponding thresholds defined
during the VSC training period, then there is an indication
that the speaker experiences stress. The emotionally-enriched
word recognition system was trained and tested for a set of
seven Greek words, four of which have similar pronunciation
in pairs. The specific words along with their pronunciation
according to the International Phonetic Alphabet (IPA) is
provided in Table II. Note that, the pronunciation of “Φωτιά”
is similar to “Φώτα”, and “Καλά” is similar to “Αλλά”. The
recognized word is coded as an integer index corresponding
to the appropriate word from the data corpus as illustrated

Table II. THE SET OF WORDS EMPLOYED FOR TRAINING

Word Pronunciation Translation Word Index
Φωτιά êO. tc»a Fire 1
Φώτα  êO.ta Lights 2
Σεισμός si. zmOs Earthquake 3
Καλά ka. la Well/OK 4
Αλλά a. la But 5
Κλέφτης  kleftis Thief 6
Καλημέρα ka.li. mE.Ra Goodmorning 7

in Table II. Accordingly, the indication of stress is coded as a
simple Boolean variable, i.e. true for stress indication and false
otherwise. The distance of the robot and the percentage of the
recognized word are both floating-point numbers. The former
is the distance in meters, whereas the latter is calculated as the
percentage of the z neighbors agreed on the recognized word
out of the total k ones, with z ≤ k. All the above information
is finally transmitted to the SEDM system, executed on the
higher ranked robot.

B. The Socially-Enriched Decision-making System

The SEDM system proposed in this work is a two-level
system. The first level runs on each one of the robot team
members, providing an assessment of the speech meaning
and emotional content, as well as a rough estimation of
the reliability of the locally reached decision on the specific
speech-related information. In parallel, each one of the robots
measures/assesses other parameters like the SPL at its location
and its position in the house. The second level runs centrally
on the higher ranked robot, based on the aforementioned
information transmitted by the individual robots of the team.
The final decision process takes into account the locally
reached decisions and measurements of all team members, tries
to reach a decision that will be followed by all team members
and is implemented in three steps.

The first step is implemented as a six input, one output,
Mamdani type FIS, using thirteen rules, and is independently
running for each one of the robot team members. The em-
ployed inputs, all coming from the specific robot team member
under evaluation, are: (i) the locally reached rough estimation
of the reliability of the decision on the meaning and emotion
for the left “ear”, (ii) the corresponding reliability for the
right “ear”, (iii) the coincidence, or not, of the locally decided
meanings for the left and the right ear, (iv) the coincidence,
or not, of the locally decided emotions for the left and the
right ear, (v) the robot distance from the sound source, and
(vi) the SPL measured at the position of the specific robot.
Once the credibility of all robots has been evaluated, the
credibility scores are passed to the second step along with
the meaning and the emotion inferred locally for each one
of the robots. Therefore, the second step is implemented as a
Mamdani type FIS, having three inputs for each robot, i.e., the
number of inputs equals the product of the number of robots by
three, and produces two outputs, the meaning and the emotion;
unfortunately, the number of rules it uses is generally large,
as the lower limit of the possible number of rules would be
equal to the product of the number of robots by the number
of words to be recognized plus one (the “unrecognized”). In
this work, a set of 62 rules was used. Figure 1 depicts the
membership functions corresponding to the considered cases
for the output variable “meaning” of the FIS in the second step.
Finally, the final step takes into account the finally inferred
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Figure 1. The membership functions corresponding to the recognized words

meaning and emotion from the previous step along with the
distance between each robot and the sound source, and the
SPL measured at the position of each robot. This step reaches
two decisions: (a) what is the action to be done and (b) which
robot should do it. Therefore, the final step is implemented
as a Mamdani type FIS, having as inputs the two outputs of
the previous step plus two more inputs for each robot, and
produces two outputs; the number of rules depends on the
different actions that the robot will be programmed to perform.
In our investigation, we considered that the number of the
different possible actions equals the product of the different
meanings to be recognized by the number of the different
possible emotions plus one, the last action being a request to
the human for repetition of the spoken word due to unresolved
meaning/emotion.

IV. PERFORMANCE EVALUATION

Two test scenarios, corresponding to different relative posi-
tions of one human and tree equivalent multifunctional robots
were employed for the evaluation of the EEWR and SEDM
systems.. Specifically, two different sound source (human
position) cases were considered for the same receiver (robot)
positions inside a typical home environment. As an acoustical
setup a typical three room (living room, kitchen and bedroom)
apartment was considered, with an approximate total surface
of 54m2 and surfaces with generally reflective materials:
for example tiled floor, painted concrete walls and windows
without curtains are used throughout the apartment, leading
to an acoustically challenging environment. Two speaker po-
sitions were defined, shown as “A0” (living room) and “A1”
(bedroom), while three robots are positioned shown as “01”,
“02”, “03” in Figure 2. The voice signal emitted by the
human is estimated at the positions of the robots for each
one of their “ears” for the above two scenarios. Note that,
robot positions “01” and “02” were deliberately positioned
in almost identical distance from the human in both test
scenarios (human positions “A0”, and “A1”), and all three
robot positions were put in very similar distances from “A1”,
to test whether the decision making system can efficiently
exploit the acoustics-related information that can be acquired
by the robots in order to decide which robot should act in
each test case. A detailed geometrical/surface model for the
apartment was created and simulated using a well-established
software platform [25]. Figure 2 depicts the three-dimensional

Figure 2. 3D Geometrical Model of the employed room

Table III. ACCURACY SCORES FOR THE VKR AND VSC SUBSYSTEMS
FOR THE LEFT AND RIGHT BINAURAL CHANNEL

Stressed/Unstressed Words VKR VSC
Left binaural channel

Unstressed (mean) 80.95% 100.00%
Stressed (mean) 69.04% 38.88%

Total mean 74.99% 69.44%
Left binaural channel

Unstressed (mean) 95.04% 92.06%
Stressed (mean) 69.04% 54.16%

Total mean 82.04% 73.11%

geometrical model, obtained from the simulation tool. Fol-
lowing the acoustic simulation for each speaker, two audio
streams (left and right ear) per robot position were created
through the auralization module, representing the actual voice
signal captured by each robot. In the following subsections the
functionality tests are presented along with the obtained results
giving an indication of the efficacy of the proposed approach
under realistic conditions.

A. Voice keyword and stress recognition

The performance of the VKR and VSC subsystems was
evaluated utilizing a test data set recorded by two male
speakers. All seven words, as presented in Table II, were
recorded for both stressed and un-stressed cases. For this
reason, both speaker were trained actors that can verbally
express emotions in a fully controllable fashion. The technical
parameters of the voice recording process were: 16 kHZ
sampling frequency, 1 channel and 16 bits sample length.
In addition, the recorded material served as input to the
auralization module of the CATT-Acoustic software used for
the acoustic simulations [25]. The output was a binaural
version of each input, which was further used as test data
for the VKR and VSC subsystems, corresponding to the
input acoustic signal for each of the robots’ ears within the
home environment considered in this work. The results of
the recognition process implemented by the aforementioned
subsystems are summarized in Table III for the left and right
binaural channels.

As it can be observed from the above summary of results,
the mean word recognition accuracy for both stressed and un-
stressed words is 82.04% and 74.99%, for the right and left
channel respectively. Also, the obtained stress identification re-
sults derived from the VSC subsystem are 73.11% and 69.44%
(again for the right and left binaural channels). These accuracy



Table IV. DECISIONS REACHED BY THE SOCIALLY-ENRICHED
DECISION MAKING SYSTEM. COLOR SHADINGS HAVE THE FOLLOWING
MEANING: YELLOW INDICATES “UNRECOGNIZED”, GREEN INDICATES

INCORRECT EMOTION BUT CORRECT WORD AND BLUE INDICATES THAT
BOTH WORD AND EMOTION INCORRECTLY INFERRED.

Decision
A0 Position A1 Position

Word
Index Emotion Req.

Action Action Robot Action Robot

1
no-stress 1 1 01 1 03

stress 2 2 01 2 03

2
no-stress 3 3 01 3 03

stress 4 4 01 4 03

3
no-stress 5 5 01 5 03

stress 6 6 01 6 03

4
no-stress 7 7 01 -1 03

stress 8 8 01 1 03

5
no-stress 9 2 01 2 03

stress 10 -1 02 10 03

6
no-stress 11 4 01 4 03

stress 12 12 01 12 03

7
no-stress 13 6 01 13 03

stress 14 12 01 7 03

values are clearly degraded compared to the VKR and VSC
identification efficiency reported in [24], where all accuracy
measurements where derived for anechoic sound recordings.
Clearly, the close room acoustic properties represent a sig-
nificant parameter for the correct word recognition, while it
is found not to significantly affect the stress identification
accuracy.

B. Decision making system

The decisions obtained by the SEDM system for the 28
different test cases (7 words by 2 possible emotions by 2
considered source-receivers scenarios) are presented in Ta-
ble IV. For each test scenario (human position) 15 different
possible “actions” were considered, corresponding to the 14
possible word-emotion combinations. From these results one
can see that the decision making system reaches the correct
decision for all, but one, cases concerning the robot that should
perform the action, since it selects the robot that is both in near
distance and in the same room, leading to an overall score of
96.43% correct decision. Note that, as already pointed out,
robot positions “01” and “02” are in almost identical distance
from the human in both test scenarios (human positions “A0”,
and “A1”). From the results presented in Table IV we can see
that the decision making system reaches the correct decision
in the vast majority of the non-stress cases. Specifically, all
non-stress actions (100%) were recognized for the first test
scenario (human placed at position “A0”), while only one of
the non-stress actions was unrecognized for the second test
scenario (human placed at position “A1”), leading to a success
rate of 85.71% for this scenario. Importantly, this means that
both the word and the emotion were correctly inferred, even
though, as already mentioned, the pronunciation of “Φωτιά”
is similar to “Φώτα”, and “Καλά” is similar to “Αλλά”. If one
would present single-figure scores for the non-stressed actions,
then 92.86% of the actions, the words and the emotions were
correctly inferred.

On the other hand, concerning the stressed words, although
the word part related to each action was correctly assessed in
most cases, yielding a success rate of 71.43% when human
is placed at position “A0” and 100% for the “A1” position,
the emotion was not successfully assessed. Specifically, only

Table V. WORD/EMOTION RELATED INPUTS AND OUTPUTS OF THE
SECOND STEP OF THE SEDM SYSTEM FOR THE FIRST AND SECOND TEST
SCENARIOS (HUMAN AT POSITION “A0” AND “A1” RESPECTIVELY). “R”
STANDS FOR “ROBOT”, “N” AND “S” ARE FOR NO-STRESS AND STRESS

REPSECTIVELY. “Wi” IS THE WORD INDEX AND “E” IS FOR “EMOTION”.

Emitted Information Locally Recognized Information Final Decision

Wi E E Wi Inferred
R.1 R.2 R.3 R.1 R.2 R.3 Wi E

Human at “A0”
1 N 0 0 0 1 1 1 1 N
2 N 0 0 0 2 2 2 2 N
3 N 0 0 0 3 3 3 3 N
4 N 0 0 0 4 4 4 4 N
5 N 0 0 0 5 5 5 5 N
6 N 0 0 0 6 6 6 6 N
7 N 0 0 0 7 7 7 7 N
1 S 0 1 1 1 1 1 1 S
2 S 1 0 0 2 2 2 2 N
3 S 0 -1 -1 3 3 -1 3 -1
4 S 1 0 0 4 1 4 4 N
5 S 1 1 1 5 5 2 5 S
6 S 0 0 0 6 6 6 6 N
7 S 1 1 1 1 5 5 1 S

Human at “A1”
1 N 0 0 0 1 1 1 1 N
2 N 1 0 0 2 2 2 2 N
3 N 0 0 0 3 3 3 3 N
4 N 0 0 0 4 4 4 4 N
5 N 0 0 0 5 5 5 5 N
6 N 0 0 0 6 6 6 6 N
7 N -1 0 0 -1 4 7 5 N
1 S 1 0 0 1 1 1 1 N
2 S 1 0 0 2 2 2 2 N
3 S 1 1 1 3 -1 3 3 S
4 S 0 0 0 4 4 4 4 N
5 S 1 1 1 5 5 5 5 S
6 S 0 1 1 6 6 6 6 S
7 S 1 0 0 7 7 7 5 N

for the 42.86% of the cases the emotion was successfully
inferred for either of the two considered human positions.
Unfortunately, the incorrect assessment of the emotion lead to
a quite limited mean score (35.71%) for the correct decision on
the required action, although a quite high mean score (85.71%)
was achieved on the word inference. This means that in the
cases for which the required action was not correctly decided
this was due to incorrect emotion inference. Table V refers
to the inputs and outputs of the second (“Meaning/Emotion”)
step of the decision making system.

V. CONCLUSION

In this work we propose an integrated approach of a
socially-intelligent multi-robot service for human caretaking
in home environments based on emotionally-enriched, speech-
based interaction. The overall approach incorporates a combi-
nation of algorithms for speaker-independent keyword recogni-
tion and combined stress (or no-stress) identification. Keyword
identification is performed over a limited set of words that are
used in everyday speech but are also associated to emergency
situations (such as fire, etc). Within this framework, stress
identification may significantly affect the final decision that
should be taken in the presence of the speaker stress conditions,
primarily in terms of prioritization of the triggered actions that
should be taken by the home monitoring system. Although
the emotionally-enriched voice keyword recognition strategy
achieves high accuracy efficiency in anechoic conditions, the
final results obtained in typical home environments are found
to be significantly degraded, especially for the word recogni-
tion task. In order to improve this performance, in this paper
we take advantage of the randomly placed robots that act as



binaural, emotionally enriched word recognizers, aiming to
provide the data derived by them to a higher level word/stress
recognition system that is responsible for producing the final
decision, including the selection of the robot that should act
as a response to the emergency condition.

This decision making system proposed hereby is executed
on the robot marked with the higher rank among the team
members. All the necessary information exchange between
the robots is performed over a typical wi-fi data network. In
all test/simulation cases considered in this work, the proposed
decision-making system was proved quite successful in select-
ing which robot should perform the action, while the word
part of the selected action was also quite successfully inferred,
increasing the mean success rate of the word recognition
achieved by the individual robots. The same holds for the
inference of the emotion in the case of “no-stress”. Therefore
the selected action for the test cases with no-stress emotion
was also quite successfully decided. On the other hand, the
“stress” emotion was not successfully enough inferred, leading
to a consequent low score regarding the correct action decision
for the corresponding test cases. Future extensions of this
work may include the continuous robot-based evaluation of the
acoustic properties of their surrounding environment that may
be associated with additional weighting functions employed by
the centralized decision-making system, towards fully-efficient
and safe home robot caretaking environments.
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