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Investigating the Impact of Sound Angular Position
on the Listener Affective State

Konstantinos Drossos, Andreas Floros, Andreas Giannakoulopoulos and Nikolaos Kanellopoulos

Abstract—Emotion recognition from sound signals represents an emerging field of recent research. Although many existing
works focus on emotion recognition from music, there seems to be a relative scarcity of research on emotion recognition from
general sounds. One of the key characteristics of sound events is the sound source spatial position, i.e. the location of the source
relatively to the acoustic receiver. Existing studies that aim to investigate the relation of the latter source placement and the
elicited emotions are limited to distance, front and back spatial localization and/or specific emotional categories. In this paper we
analytically investigate the effect of the source angular position on the listener’s emotional state, modeled in the well–established
valence/arousal affective space. Towards this aim, we have developed an annotated sound events dataset using binaural processed
versions of the available International Affective Digitized Sound (IADS) sound events library. All subjective affective annotations
were obtained using the Self Assessment Manikin (SAM) approach. Preliminary results obtained by processing these annotation
scores are likely to indicate a systematic change in the listener affective state as the sound source angular position changes. This
trend is more obvious when the sound source is located outside of the visible field of the listener.

Index Terms—Sound events, affective state, Binaural processing, emotions, affective acoustic ecology
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1 Introduction

Sound is a dominant component of human percep-
tion. It can emerge from various activities and

sources, e.g. nature, human activities, machine oper-
ation and others. It is also a fundamental component
for a wide number of applications in the area of en-
tertainment (i.e. music, sound in video games, etc.)
and communications (i.e. as speech/voice, alarms and
sonification output in human-machine interfaces) [1].
Hearing does not require neither visible contact with
the source nor a free path between the source and
the receiver. When we hear sounds, we process them,
appraise them and maybe decide to take some actions.
In some or all of the above steps emotions are raised [2].

Music may be regarded as sound with well organized
structure and form [3]. It is stated that it was originally
developed as a technique to mimic and enhance the
human voice and the conveyed emotions [4]. This fact,
combined with the well established notion of emotion
conveyance from music [3], [5], has led into a deep
proliferation of Music Information Retrieval (MIR) and
Music Emotion Recognition (MER) disciplines: MIR
focuses on using emotion as a feature for content-based
categorization and retrieval, with a typical example
being the enhancement/proposed substitution of legacy
music classification based on “Band - Artist - Year -
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Genre” scheme by clustering the musical data according
to the elicited emotion and/or mood1 [6]. MER on the
other hand investigates the relation between music and
the elicited listener’s emotions [7]. Both raw and sym-
bolic music data are considered, while various emotional
models are employed [8], [9], [10].

However, music is only a portion of what we hear.
There are numerous non–linguistic and non–musical
sounds (termed as Sound Events) that construct the
ambient audio environment [1]. Despite this significant
role of sound events, only recently a limited number
of studies have focused on emotion recognition from
them [11]. Sound events are not simply signal rep-
resentations. They inherently incorporate additional
information related to many attributes of the sound
source and its surroundings, such as it’s spatial position
or movement relative to the listener, the nature of the
sound generation mechanism (e.g. impact noise), the
volume and texture of the surroundings and others [12].
Typically, they emanate from human activities (e.g.
walking, hand clapping, coughing), natural phenomena
(e.g. sound of rain, wind, thunders), animals (e.g. dog
barking, birds singing), machines (e.g. car noise, gun-
shots, soda fizz) or interaction between objects (e.g.
impact, scraping) [1], [11]. They are also artificially
synthesized within the scope of modern interactive au-
diovisual applications, including artificial ambient au-
dio environments [1], soundscapes [13], virtual or aug-
mented reality acoustic environments [14], video games
and auditory-based Human-Computer Interaction, in a
continuous attempt to enhance the immersion and the
experience of the user [15].

The information conveyed by sound events represents

1. e.g. http://www.allmusic.com
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essential data for the interaction between the listener
and his environment. Such input and the resulting inter-
action is likely to engender emotions to the listener [16].
This particular fact has recently led to the concept of
Affective Acoustic Ecology, in a generalized attempt to
take into account the relation between the surrounding
sound events and the listener’s affective reactions within
the legacy notion of Acoustic Ecology [1]. The key
component of this definition is the sound event rep-
resentation as a data structure that includes multiple
information types: the sound waveform, the event time–
duration, the semantic content and the sound source
spatial position relative to the listener.

Under the above perspective, in this paper we aim to
analytically investigate the potential impact of sound
events source spatial position parameter on the human
listener affective state. We particularly focus on the an-
gle variation between the listener and the sound source
under constant distance conditions, bridging the gap
with existing works that only investigate the potential
relation between elicited emotions and distance [17].
On the other hand, two studies already exist that
explore the connection of the sound source angular
position and the elicited emotion, considering only two
generic spatial ranges at the front and at the back of
the listener. The first one exclusively focuses on the
emotion of “Fear” [18], while the second [19] reaches the
conclusion that the placement of sound sources beyond
the field of vision of the listener introduces increased
arousal conditions. On the contrary, we hereby consider
a full affective model and multiple angular positions
on the horizontal plane. Towards this aim, we employ
sound spatial rendering using binaural technology [20].

It is well–known that binaural processing results
into a two–channel waveform that inherently encapsu-
lates all the spatial information required for accurately
modeling a sound event under the Affective Acoustic
Ecology scope. Binaural signals may at some extent
include multiple information related to a sound event
nature, such as the reverberant field of the reproduction
space [21]. Also, it has been reported that in reverberant
rooms the source-receiver distance can be estimated
with the utilization of binaural technology by employing
signal statistics regarding the reverberant field [22]. As
a consequence, they are utilized in a wide range of
application fields, like hearing aids [23], dereverbera-
tion [24] or even stereo recordings enhancement [25].
Thus, within the scope of this work, they can be consid-
ered as a well-defined approach for modeling generalized
sound events, with constant distance from the listener,
under authentic and realistic terms.

The assessment performed in this work included a
series of subjective evaluation experiments using an
emotionally pre–annotated sound database with 167
sounds having multiple semantic content [26]. Binaural
processing of the original sound data was realized using
the KEMAR HRTF library [27]. For each original sound
signal, 5 binaural versions were created, corresponding

to angles equal to 0, 45, 90, 135 and 180 degrees.
Finally, the participants’ affective state was defined in
terms of a 2–dimensional (2D) affective model, while the
annotations were performed using the Self Assessment
Manikin (SAM) method, which is suitable for affective
state depiction [28].

The rest of the paper is organized as follows: Section 2
presents a brief overview of the emotion recognition pro-
cess from sound events, including a concise description
of the affective model employed and the corresponding
emotion annotation methods followed. In Section 3 the
exact experimental process is described, followed by the
obtained results summarized in Section 4. The obtained
results are analytically discussed in Section 5, while
Section 6 concludes the work and depicts some issues
and recommendations for future work.

2 Emotion Recognition from Sound
Emotion recognition from audio data can be regarded as
an Artificial Intelligence/Pattern Recognition task [29]
that requires the employment of a ground truth (or
training), emotionally annotated dataset. This annota-
tion involves emotion labels/classes appropriately cho-
sen to closely match the employed affective model.
The same data set is used for extracting appropriately
selected signal technical features. Both emotional anno-
tations and the extracted feature values are feeding a
machine learning algorithm and a classification model
is finally acquired. The annotations and the technical
features of the testing dataset are finally used for
the evaluation of the developed model, providing an
estimation of the classification accuracy. The rest of this
Section provides a brief report on well–established affec-
tive models and the corresponding annotation methods
followed, alongside with an abridged overview of the
emotion recognition from SEs.

2.1 Emotions modeling
Modeling of emotions seems to be a widely debated
and interdisciplinary aspect. Although many affective
models exist [29], audio emotion recognition mainly
employs a) discrete and b) continuous models [8], [11].
In the former category, emotions are represented as dis-
tinct terms expressed with verbal descriptions. Different
words are assigned to different emotions. The most com-
mon models in this group are the basic emotions model
and the list of adjectives [30]. The first one introduces
a set of primary emotions, i.e. “Happiness”, “Sadness”,
“Fear” and “Anger”, where their combinations can lead
to any other emotion [31]. Although this model was
throughly questioned by [32], it appears that it is pre-
ferred for studying physiological responses to particular
emotions, e.g. in neurogical research where there is a
direct connection of particular brain’s regions activity
with specific emotions which lie in the basic emotions
set [1]. For example, there are works reporting the
connection of the activity in limbic/paralimbic system
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Fig. 1. Clustering and qualitatively mapping of VA space
to verbal description of emotions, based on the circumplex
model [41] and as proposed by [40].

with emotions belonging in the basic emotions set [33],
[34].

The list of adjectives modeling approach employs a
set of distinct emotional conditions. For each of these, a
set of synonym adjectives is provided. It was originally
introduced by [35] and its difference from the basic
emotions model is that it considers a set of affective
or emotional states, each one described with a set of
synonym adjectives. There are also studies that propose
extensions of the list of adjectives model with the
amount of the distinct emotional conditions reaching
up to 13 [36].

On the contrary, continuous affective models consider
emotions as a resultant condition from a set of basic
affective states, e.g. arousal and valence. These are nu-
merically mapped on orthogonal axes with continuous
values. A specific emotion is expressed in terms of the
unit vectors in the space defined by the above axes.
Although the usual amount of axes is 2, leading to a
2D representation [37], there are studies reporting the
usage of more dimensions with the preferred amount set
to 3 [38]. Typical affective states used in a 3D space
are valence, arousal and dominance [37], [38]. However,
the 2D model can be considered advantageous over the
3D one, since it reduces complexity [39]. Correlation
of the resulting values with the verbal descriptions of
emotions is quantitively performed through clustering
or qualitatively through depiction of points in the di-
mensional representation. The words assigned to differ-
ent emotions are either used as labels for areas usually
situated in different quadrants in the valence/arousal
(VA) plane [40], for the former case, or as indicating
points in the circumscribed circle of the 2D space [41],
for the latter one. An illustration of both cases is in
Figure 1, after [40], [41].

Although there is a qualitative correlation of the val-
ues in the space of a continuous model with the verbal
descriptions used in a discrete model, no quantitative
one is reported. In the continuous models there are no
numerical sets of values for the affective states which

define areas (on the continuous model’s space) that
could be mapped to various individual emotions of a
discrete model. An exception to this is the separation
of a 2D space into quadrants, as shown in Figure 1,
using the median values of the two dimensions.

There are continuous 2D models depicting more than
one discrete emotions in one quadrant [5], [8], [42]. But,
there is no published report for actual values that can be
used in order to quantitively cluster arousal and valence
values and distinct individual emotions. Also, it has
been previously shown that a categorization of emotion
in the 2D plane is ambiguous [8]. This obscurity can
be resolved by the continuous approach, assuming that
each value in the 2D plane is a distinct emotional state
and without any verbal description for the separate
plane’s values [8].

2.2 Emotion annotation methods
Affective annotations are performed through labeling
an audio dataset using written verbal descriptors for
emotions or values of affective states. In either case they
form the classes required by the emotion recognition
process for the classification task. The actual labels
are assigned by human subjects. The exact choice of
an annotation method is likely to be well connected
with the chosen affective model. For example, when a
discrete model is utilized, the annotation is performed
with the use of verbal descriptions of emotions, i.e.
“Happiness”, “Joy”, “Enlightment” etc [4]. But the
usage of words seems to introduce an inconsistency
between different approaches ascribed to the possible
different words used for same or similar emotions and
the particular perception of the words actually em-
ployed by the annotators [4].

In [28] a method for self assessment and annotation
of emotion is introduced which exploits the capabilities
of the dimensional models. This method uses figures of
a manikin (i.e. the Self Assessment Manikin – SAM)
in order to portray the discrete values of the affective
states used in a dimensional model, i.e. valence, arousal
and dominance. In its original form, 5 manikin figures
are mapped to each valence and arousal dimensions
along with the intermediate values between the avail-
able choices, leading to 9 accessible values for each
affective dimension.

2.3 Sound events and emotions
In general, research in the field of emotion recognition
from SEs is rather sparse and loosely connected [11].
Attempting a brief literature overview, we can start
from an early work [43] which aimed to define everyday
listening through an alternative ecological approach.
This work argued that human listening is actually
the experience of hearing events and not sound wave-
forms. Additionally, it introduced a framework that
maps various sound sources’ attributes (including their
spatial location relative to the listener) to the actual
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sound hearing experience. For example, it is stated that
the resonating cavities of a source affect the spectral
pattern of the sound, while the material of the source
has impact on the frequency and complex effects on the
amplitude of the perceived sound event.

The above work does not particularly focus on emo-
tions conveyed by sound events, although it provides
an alternative scope for defining sound as a listening
experience that definitely involves emotions. Only lately
research has particularly focused on the affective im-
pact of sound as a generalized, perceived event, thus
extending the relative existing investigations that deal
exclusively with musical content and speech signals.
Towards investigating this extended field, in [26] the
International Affective Digitized Sound (IADS) emo-
tional SEs database was presented, aiming to pro-
vide a ground–truth reference for future experimental
studies. This database contains emotionally annotated
general sounds which were marked up by a relative
large number of people: the amount of annotations per
sound was performed by an average of 100 people. The
IADS dataset contains 167 sound events with a variety
of semantic content ranging from every–day human
activities, e.g. coughing, to animal sounds, e.g. dog
barking, and usual or private activities, e.g. vomiting
or sexual interjection. However, no spatial positioning
information of the recorded sound sources is included.
The annotation of the dataset was performed with
the utilization of the 3D (arousal, valence and domi-
nance) continuous emotional model and the SAM self-
assessment method mentioned earlier.

Recognizing the potential (and probably significant)
impact that the sound source position can result into
the listener’s affective domain, a recent research has
focused on fear as the target emotion under investiga-
tion [18]. A set of 24 loudspeakers was used for sound
spatialization at two positions/areas: in front and at the
back of the listener. Only a limited number of humans
participated in the subjective evaluation process. The
results demonstrated that the participants perceived as
most scary the sounds originating from outside of their
field of vision, i.e. when the sound source was located
at their back. Emotional responses with the variation of
the source–listener distance and the lateral reflections
imposed by the reproduction enclosure were studied
in [44]. This work was also limited to fear. The results
obtained portray an impact of the source location (and
movement) to the listener’s raised emotion. In particu-
lar, the listeners exhibited stronger emotional reactions
and increased fear as the sound source was approaching.
In addition, the room size was also found to affect
the emotional responses in an analogous fashion, i.e.
the larger the room, the stronger were the emotional
reactions of the listeners.

Recently in [1], the authors proposed an extension
of the legacy Acoustic Ecology concept in order to
include the affective aspects of sound. This extension
was termed Affective Acoustic Ecology. It’s key–concept

is the sound event, defined as a complex structure
that encapsulates a number of legacy sound representa-
tion attributes, such as waveform, duration and sound
source spatial positioning in the listener’s direct acous-
tic environment. Based on this Affective Acoustic Ecol-
ogy framework, an attempt for a concurrent recognition
of both arousal and valence dimensions from the IADS
dataset was also performed. The classification results
obtained were not encouraging, being in the range of
50% for the arousal and close to 40% for the valence.
More robust and encouraging results were obtained
in [3], which focused exclusively on the arousal recog-
nition from the rhythmic characteristics of generalized
sound events. Again the IADS dataset was employed
and the classification accuracy reached up to 89%. A set
of 26 rhythm–related acoustic features was considered
for classification purposes. The sound corpus consisted
of 7 different versions of the original IADS dataset.
Each version was composed by the IADS waveforms
windowed with different window time-lengths (ranging
from 0.8 to 2.0 seconds).

In [11] emotion recognition from sound events was
attempted, using a new dataset. It was performed in
conjunction with the evaluation of features that can be
utilized in emotion recognition for music and speech.
The utilized dataset consisted of sounds from the Find-
Sounds database [45]. These sounds were emotionally
annotated by 4 subjects and the obtained mark ups
were averaged using the evaluation weighted estima-
tor [46]. The results showed that it is difficult to obtain
a set of acoustic features that can be commonly used
for emotion recognition for all sound events, music
and speech cases. On the contrary, an inverse trend of
features’ variation in these three different application
domains was reported, which shows that specific fea-
tures have opposite effects in the above sound content
categories.

From the above literature overview it becomes clear
that there is a lack of research towards the investigation
of the potential impact that the sound source position-
ing (or movement) may raise to the affective state of the
human listener. Towards the systematic exploration of
this area of research, in this paper we investigate how
the human listener emotional state is affected by various
sound sources placed at different locations around him.
Specific questions are addressed, such as: are there
any variations in the affective state of the listener as
the source spatial position is changing? And how are
these alterations related with the angle between the
listener’s reference axis and the sound source position?
Through a series of subjective listening tests, we try
to outline an analytical relation between the source’s
location modification and the listener’s emotional state
variation.

Since there is no available emotionally annotated and
spatially–varied sound events database, a secondary,
collateral contribution of this work is to offer such
a ground–truth reference set. We have formed this
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database based on the original IADS dataset and have
produced the sonic spatial representation using binaural
processing. Due to the well–known, limited efficiency
of binaural technology for representing moving sound
sources [47], our investigations here do not consider
moving sound sources. Instead, we aim to assess the
affective state relative differentiation that is potentially
imposed when a sound event occurs at different angles
around the human listener. Additionally, in all test
cases, the sound source distance is kept constant and
equal to 1 meter. Hence, all sound event spatial posi-
tions are located on a circle with its center being the
listener’s head. Finally, without any significant impact
to the generality we assume that a) sound propagation
is performed in the open field, hence no close room-
related acoustic phenomena occur and b) all sound
sources are facing towards the listener; thus no direc-
tional properties of sound on the source side are applied.

3 Experimental setup
We followed an experimental sequence that consists
of the following parts: a) the creation of the binaural
sound corpus, b) the subjective listening tests that
derived the affective annotations for all sounds included
in the binaural sound corpus, and finally c) appropriate
pre–processing of the original subjective ratings, in
order to derive alternative meaningful representations
that can be further analyzed to obtain meaningful
results. These parts are analytically described in the
next subsections.

3.1 Binaural sound corpus creation
The utilized sound corpus was created using the IADS
sound events library [26]. IADS was chosen instead
of another available dataset [30] due to the larger
amount of available ratings per sound. It consists of
167 monophonic sounds (denoted here as s(i), with i ∈
[1, 167]), with various semantic content. The dataset
also includes the mean and standard deviation values
for emotion annotations from 100 participants for each
sound waveform. The averages of these annotation rat-
ings per s(i) in the VA space are graphically presented
in Figure 2. Clearly, these mean values are assembled in
three quadrants of the VA space. As it is stated in [26],
this is due to the fact that it is unlikely for a human
to hear a sound that he/she does not like and not feel
aroused.

All s(i) waveforms were binaurally processed using
the KEMAR HRTF library [27]. The set of the spatial
angles considered is θ(k)={0o, 45o, 90o, 135o, 180o},
where k ∈ [1, 5] is the corresponding spatial index. Tak-
ing into account the symmetry of HRTFs on the hori-
zontal plane, we do not consider angles larger than 180o.
It must be noted here that although this assumption
is valid from a technical point of view, psychological
studies have already reported a clear left-ear advantage
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Fig. 2. IADS mean annotation values.

for identifying emotional qualities [48]. Under this per-
spective, our approach cannot be generalized to cover
the overall horizontal plane. Hence, binaural processing
produced 5 binaural versions sb(i, k) of the i-th orig-
inal IADS waveform. The derived sound corpus was
finally organized in terms of 5 angular subsets Sa(k),
each containing all 167 sb(i, k) binaural waveforms, i.e.
Sa(k) = {sb(1, k), sb(2, k), . . . , sb(167, k)}. Finally, all
binaural signals were normalized to an average of −4.44
relative to full scale (dBFS) in order to avoid further
sound clipping artifacts which could be introduced by
the amplification adjustments performed by the human
subjects. Each Sa(k) subset was stored in the database
organized in tuples ta(k) formed as:

ta(k) = (sb(i, k), c(i, k)) (1)

where c is an integer counter defined for controlling the
selection of the sb(i, k) sounds to be reproduced during
the experimental process (the details of this control
mechanism are provided next in Section 3.2).

3.2 Corpus annotation
The sequence of the annotation tests was performed
remotely through a web-based platform2, thus introduc-
ing a number of advantages:
• simultaneous access of different participants re-

duces the time required for successfully organizing
the experiments

• each participant is able to perform the experiment
at his convenience, since no time and location
restrictions apply. This fact also diminishes the
undesired effect of the user fatigue, as well as any
negative feelings raised by the unfamiliar environ-
ment of a typical laboratory space

• access to distant participants from all over the
world is feasible. This is an important feature
that can lessen the substantial effect of cultural
distinctiveness on the final subjective ratings. To

2. http://www.audemo.eu

http://www.audemo.eu
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TABLE 1
Participants country origin distribution

Country (%) Country (%)
Greece 18.92% France 5.85%
The Netherlands 3.28% Finland 5.85%
Australia 3.28% New Zealand 3.28%
United Kingdom 12.27% Denmark 4.56%
Canada 4.56% Germany 3.28%
Unknown (.com and .org domains) 34.87%

ensure such participation, the conduction of the
experiment was advertised through international
and widely-known lists of electronic mails, such as
the auditorylist3. Hence, although the instructions
were written only in two languages, the usage of
English language can be considered sufficient since
the majority of mails in the employed electronic
lists are written in English. Table 1 summarizes
the distribution of the geographical origin of the
participants, as it was obtained by extracting the
internationalized domain names from the submit-
ted e–mail addresses used for login purposes.

On the other hand, this remote experimental execu-
tion also imposes some risks. Headphone equalization
that is typically required for artifact-free binaural re-
production is not feasible. More importantly, it is not
verified whether the subjects were using headphones,
although they were strongly requested to do so. The
quality of the user playback consumer equipment may
also influence the sound reproduction quality, mainly
in terms of induced noise and harmonic distortion. A
series of additional potential risks originates from the
non-laboratory experimental conditions: For example,
multiple subjects participation and external user dis-
tractions imposed by other people or noisy conditions
may render the participants inattentive and acoustically
disturbed; thus, these conditions may consequently
affect the validity of the recorded annotation mark–
ups. We have to note though that such practical but
important issues are subject to the trust that should be
ascribed to human volunteers participating in a subjec-
tive test, thus overcoming possible arguments related to
the participants’ answering truthfulness. For example,
even in a fully-controlled laboratory environment, the
outcome of a subjective evaluation can be equivalently
affected by the degree of responsibility, faithfulness and
truthfulness of the participants, or even the user fatigue
that may be induced during in-laboratory subjective
assessments [49].

For avoiding multiple participations of the same
subjects we employed a login by e-mail mechanism
combined with a user registration prerequisite. Under
this mechanism, each participant had to create an indi-
vidual account, then log into the platform with his own
credentials and perform the experiment. Although this
technique can allow the creation of multiple accounts

3. http://www.auditory.org

(and thus introduce noise in the obtained annotations)
we have tried to reduce this possibility by rejecting the
results obtained by users with the same (or very similar)
registered profiles.

A total number of 215 valid participants responded
providing a set of 3905 annotations. The actual listening
tests were organized in two stages. During the first
one, a short introductory text is presented summarizing
the usage of the platform and strongly prompting the
participant to use headphones. Next, a 1kHz tone is
reproduced and the subject is asked to adjust the
reproduction gain for his headphones to a comfortable,
non–annoying level. Following the level adjustment pro-
cess, an informative video4 is shown, demonstrating the
details of the listening tests and explaining the SAM
scores. It is also clearly stated that there is no correct
or wrong answer.

For each human subject, a playlist is automatically
generated containing 15 sb(i, k) soundtracks. Three
sounds from each angular subset are chosen randomly
according to the condition:

I(k) = min
c(i,k)

(ta(k)) (2)

where I(k) is a tuple of the form of ta(k). Upon the
selection of an I(k) the corresponding sb(i, k) is selected
for reproduction and the c(i, k) element is increased
by one, identifying the amount of participation for
the corresponding sb(i, k) in a playlist. This counting
is chosen in order to decrease the probabilities for
a sb(i, k) to be selected repeatedly from the random
collection process.

During the second part of the experiment the subjects
are able to sequentially listen to the sound tracks of
the corresponding playlist. Then, the subjective SAM
rating options are shown and the subjects are asked
to select their own arousal and valence ratings. The
selected scores are stored in a database along with the
corresponding playlists.

3.3 Subjective ratings post-processing
Due to the remote execution of the experiment, it is
observed that some of the participants did not complete
it. Thus, their ratings have to be excluded from the
final results derivation. This leads to a total of 50 fully
annotated sound events s(i′) (or a total of 250 sb(i′, k)
annotated sounds). For reasons of simplicity, we use a
separate index i′ ∈ [1, 50] for these sounds, mapped to
the i-index of the original IADS s(i) sounds using the
equation:

i = i′ + f(i) (3)

where f(i) is an integer representing the total number of
IADS sounds that are excluded up to the i-th sound. In
the final dataset a total of 2946 subjective annotations
are included.

4. https://www.youtube.com/watch?v=COhmf206VIg

https://www.youtube.com/watch?v=COhmf206VIg
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TABLE 2
The mean and σ values for the amount of ratings that

each sound received along with the amounts of total and
per angle obtained annotations

Angles
Amount of ratings 0o 45o 90o 135o 180o

Mean 9.54 10.60 9.84 10.36 9.92
σ 3.11 3.72 3.84 3.02 3.90

Average mean 10.05
Average σ 3.52

Following the definition of the angular subsets Sa(k),
we can hereby define new angular subsets S′a(k) con-
taining all the binaural sounds sb(i′, k) (i′ ∈ [1, 50])
that correspond to the same sound source angle θ(k).
These notations are useful for analytically modeling
the metrics employed for presenting the results in the
following Section.

4 Results
In this Section, a draft presentation of the overall
results structure and values obtained is included. Their
analysis and subjective interpretation is provided next
in Section 5.

Table 2 shows the mean and standard deviation (σ)
values for the amount of ratings that each sb(i′, k)
sound received from the subjective annotators sepa-
rately for each angle θ(k) and in total. Furthermore,
the obtained subjective rates for the binaural signals
sb(i′, 1) are compared against the rates of the corre-
sponding s(i′+ f(i)) sound events of the original IADS
dataset. In particular, if we assume that Aa[x] and
Av[x] denotes the mean annotations’ value obtained for
a signal x and for the arousal and valence dimensions
respectively, then the comparison above is performed in
terms of the differences:

Da(i′) = Aa[s(i′ + f(i))]−Aa[sb(i′, 1)] (4)
Dv(i′) = Av[s(i′ + f(i))]−Av[sb(i′, 1)] (5)

The Da(i′) and Dv(i′) values are presented in Table 3,
together with their mean and standard deviation (σ)
values. In addition, the mean and standard deviation
values of the corresponding absolute differences values
are shown.

Figures 3a to 3e illustrate the scatter plots of the
mean arousal and valence annotation values for all an-
gular subsets S′a(k). Hence, each point in these graphs
is defined by the cartesian coordinates (a(i′, k), v(i′, k))
equal to corresponding mean arousal and valence val-
ues, respectively.

Another interesting metric is the variation of the
Av[sb(i′, k)] and Aa[sb(i′, k)] mean values with the spa-
tial angle θ(k). The above pairs of values (termed here
as VA vectors) for consecutive / neighboring pairs of
spatial angles θ(k) can be expressed as:

−→va(i′, k) = (Ad
a[sb(i k)])−→a + (Ad

v[sb(i k)])−→v (6)

TABLE 3
Difference of the mean values for Arousal and Valence

ratings of the final binaural and the original IADS
dataset.

i′

Arousal
differ-
ence
(Da(i′))

Valence
differ-
ence
(Dv(i′))

i′

Arousal
differ-
ence
(Da(i′))

Valence
differ-
ence
(Dv(i′))

1 -2.09 -0.75 26 0.58 0.23
2 2.25 1.67 27 0.14 1.55
3 -0.54 1.07 28 -0.72 1.21
4 -1.04 0.84 29 0.52 1.31
5 0.70 -0.97 30 -0.07 1.02
6 0.77 0.35 31 -1.99 1.75
7 2.53 -0.81 32 0.22 1.46
8 -1.24 0.55 33 0.22 -0.37
9 1.65 -1.63 34 0.26 0.46
10 1.18 -0.17 35 1.37 -0.59
11 0.05 0.14 36 1.99 -0.68
12 -0.11 0.95 37 1.11 -0.54
13 0.19 0.13 38 -2.83 1.79
14 0.88 0.01 39 -0.33 0.31
15 0.43 -0.54 40 0.72 2.13
16 1.48 0.72 41 -1.42 0.61
17 -0.83 -0.42 42 -0.20 0.71
18 -0.06 0.04 43 -1.45 1.86
19 0.30 0.08 44 0.00 1.99
20 -0.58 0.79 45 2.09 0.08
21 0.70 -1.08 46 -0.49 -0.30
22 1.58 -0.58 47 0.58 1.88
23 0.52 -0.25 48 -0.05 1.03
24 0.72 -1.79 49 -1.14 1.76
25 0.10 0.24 50 0.25 -0.01
Mean arousal: 0.18 Mean valence: 0.38
σ of arousal: 1.12 σ of valence: 0.98
Absolute
mean of
arousal:

0.87
Absolute
mean of
valence:

0.84

Absolute σ of
arousal: 0.73 Absolute σ of

valence: 0.62

where −→a and −→v are the unit vectors for the arousal
and valence dimension respectively, k ∈ [2, 5] and
Ad

a[sb(i k)] and Ad
v[sb(i k)] are defined as:

Ad
a[sb(i k)] = Aa[sb(i′, k)]−Aa[sb(i′, k − 1)] (7)

Ad
v[sb(i k)] = Av[sb(i′, k)]−Av[sb(i′, k − 1)] (8)

The angles of the above vectors (calculated relative
to the arousal unit vector −→a counterclockwise) as well
as their magnitudes are calculated using the equations 6
and:

φ(i′, k) = arctan
(
Ad

a[sb(i k)]
Ad

v[sb(i k)]

)
(9)

The resulting values of −→va(i′, k) vector angles (in
degrees) and magnitudes are shown in Table 4.

5 Discussion
A detailed discussion on the results presented in the
previous Section may be organized in terms of the
following three assessment attempts:
• the investigation of the accuracy of the subjec-

tive results performed by evaluating the differences



8

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

Arousal

V
a
le

n
c
e

(a) VA mean values for S′a(1) subset
(θ(k)=0o)
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(b) VA mean values for S′a(2) subset
(θ(k)=45o)
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(c) VA mean values for S′a(3) subset
(θ(k)=90o)
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(d) VA mean values for S′a(4) subset
(θ(k)=135o)
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(e) VA mean values for S′a(5) subset
(θ(k)=180o)

Fig. 3. VA mean values for S′a(k) and k ∈ [1, 5]

between the annotations provided with the IADS
dataset and the ones obtained here. Since the
IADS sounds are monophonic, the best approach
for performing the above comparison is to consider
the binaural sounds for θ(1)=0o. This also allows to
investigate whether the conveyance of any spatial
information can alter the measured ratings for the
above case.

• the analytic assessment of the effect of the variation
of the sound source angular position on the affec-
tive state of the listener in terms of the annotated
VA values.

• the particular interpretation of the above VA val-
ues for sound events that have music content. Due
to widespread and accustomed adaptation of music
listening in every day life, the effect of the musical
source’s spatial position to the listener’s affective
state is likely to reveal noteworthy results.

These assessment attempts are analytically described
next.

5.1 VA values comparison to the IADS dataset
Focusing on the Da(i′) values presented in Table 3, the
mean and absolute–mean difference of the subjective
ratings obtained in this work for k=1 and the ones
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TABLE 4
VA vectors angles and magnitudes versus applied angular transitions

Angular transitions
0o → 45o 45o → 90o 90o → 135o 135o → 180o

i′ index φ(i′,2) |−→va(i′,2)| φ(i′,3) |−→va(i′,3)| φ(i′,4) |−→va(i′,4)| φ(i′,5) |−→va(i′,5)|
1 -150.89 1.80 -171.35 1.11 69.78 0.84 47.54 0.88
2 85.14 2.10 -79.94 1.27 82.54 0.77 164.05 1.27
3 144.58 1.31 -7.99 0.74 -137.54 1.33 91.83 1.57
4 88.75 1.35 -112.02 1.19 39.54 2.30 -112.31 1.20
5 126.05 1.18 -18.71 0.60 14.29 1.56 176.19 2.15
6 -132.75 1.15 173.93 0.53 0.00 1.92 141.99 1.25
7 136.90 1.04 -126.03 0.45 49.14 0.87 -17.44 1.86
8 174.68 2.60 -36.43 1.09 142.79 0.59 141.51 1.22
9 -78.24 1.44 82.52 0.55 -104.93 0.34 5.06 2.16
10 179.06 1.36 26.57 0.99 135.00 0.31 24.15 0.88
11 -148.39 1.27 45.00 0.71 34.70 0.88 -111.97 1.71
12 61.46 0.51 -60.95 0.74 -82.41 0.27 58.90 1.31
13 -115.69 1.40 93.84 1.02 95.71 0.71 -15.54 1.96
14 -114.02 1.94 56.31 0.90 -146.63 0.72 1.96 2.21
15 143.51 1.44 -71.57 1.36 56.31 0.97 -132.27 0.21
16 105.48 0.80 78.50 1.00 -106.26 0.42 -14.62 0.28
17 -150.36 1.06 133.78 1.48 26.57 0.67 -87.99 0.52
18 48.37 1.51 -136.70 1.79 106.77 1.48 -42.88 1.45
19 121.15 1.52 -103.64 0.96 -54.46 0.78 141.67 0.52
20 175.36 0.26 118.07 0.27 0.00 0.14 -66.64 0.62
21 -60.95 1.14 150.86 1.44 -93.22 0.55 -5.87 0.81
22 -23.20 1.90 75.47 1.16 -125.42 1.42 106.70 0.46
23 159.01 1.23 29.36 1.29 -105.95 0.81 81.76 0.53
24 -145.95 0.64 22.75 0.60 -55.30 0.28 -82.57 0.37
25 -144.46 0.66 -57.69 0.56 136.23 1.00 -6.30 1.56
26 175.96 1.11 -35.33 1.49 122.35 1.33 93.18 0.38
27 55.01 0.55 180.00 0.64 34.01 1.10 -141.34 0.99
28 104.04 0.52 90.00 0.62 -120.26 0.69 -19.98 1.17
29 14.38 0.64 169.77 1.02 -35.80 1.07 -15.22 2.34
30 168.02 0.34 91.70 1.02 -64.71 1.14 172.57 0.97
31 152.88 0.84 107.65 0.58 99.46 1.52 -71.39 2.59
32 -135.00 0.94 -60.26 0.38 121.26 2.08 -38.66 2.05
33 -120.74 0.47 134.88 1.78 171.47 0.36 -75.96 1.55
34 80.54 0.65 -71.57 1.19 -25.02 0.61 129.92 1.95
35 -28.07 1.89 142.68 1.41 -77.47 0.69 148.57 0.72
36 162.65 2.00 -31.86 2.71 164.05 1.32 55.01 1.57
37 6.48 1.85 169.58 1.92 -22.09 1.73 172.98 2.48
38 171.87 0.94 2.73 2.34 174.39 2.61 -61.75 0.69
39 -176.69 1.08 -27.31 1.96 152.41 2.73 -20.03 1.48
40 1.17 0.56 144.46 0.22 134.47 1.10 18.12 0.69
41 -134.44 1.03 129.62 1.90 -33.69 1.56 -60.26 1.07
42 160.35 0.83 48.61 0.77 175.96 1.25 25.23 1.37
43 151.78 2.58 -5.57 1.72 -70.02 1.46 103.84 0.81
44 171.23 3.36 28.49 1.25 -170.54 0.17 -93.27 0.42
45 -1.71 0.76 -71.57 0.29 -131.19 0.97 118.24 0.80
46 -127.12 1.16 -101.51 0.79 55.01 1.74 148.57 0.75
47 59.71 2.12 3.67 0.93 180.00 2.11 -30.26 1.54
48 76.07 1.28 -114.21 1.36 29.54 0.86 -90.00 0.70
49 102.76 0.78 -17.20 2.20 -170.54 0.65 -120.96 0.83
50 -20.62 2.06 135.00 1.68 -45.00 0.47 108.43 0.35

provided with the IADS dataset is below unity, with
values equal to 0.18 and 0.87 respectively. The same
fact is observed for the standard deviation of the above
differences, which is marginally equal or less than 1.
Since the SAM subjective ratings were defined as in-
tegers in both cases, difference values less than one
do not imply actual differentiation in the annotation
scores. Only values in the range of [1 2) indicate a
difference of one intermediate SAM rating step, while
greater ratings in the [2 3) interval denote that the
ratings’ distance corresponds to one actual SAM figure.
A number of sound events in the set sb(i′, 1) though
demonstrate Da(i′) and Dv(i′) values that exceed the

unity margin. But, given the small amount of ratings
acquired for each sound event in S′a(1) (presented in
Table 2), one may assume that the obtained mean
values of annotations are not significantly different from
the IADS ones. Hence, before proceeding to any further
analysis, a series of hypothesis tests is carried out for
each sound event that exhibits difference above the
unity margin. The list of the p values derived from the
hypothesis tests for these sounds is presented in Table 5.
For these tests, the null hypothesis is defined as: the
procured mean values of arousal and valence are not
different from the IADS dataset, with the alternative
stating that there is such a difference. Since the full



10

TABLE 5
Semantic content and p values from Z-Tests of the sound

events that exhibit |Da(i′)| > 1 and |Dv(i′)| > 1

i′
Semantic
cont. Da(i′) p i′

Semantic
cont. Dv(i′) p

|Da(i′)| > 1 |Dv(i′)| > 1
1 Cat -2.09 0.00 2 Dog 1.67 0.02
2 Dog 2.25 0.00 3 Baby 1.07 0.18
4 Kids 1 -1.04 0.23 9 Tropical -1.63 0.06
7 Rattle-

snake 2.53 0.00 21 Fight 2 -1.08 0.26
8 Robin -1.24 0.15 24 Creep -1.79 0.00
9 Tropical 1.65 0.05 27 Horse

race 1.55 0.01

10 Erotic
fem 1 1.18 0.01 28 Paint 1.21 0.00

16 Couple
sneeze 1.48 0.06 29 Sink 1.31 0.01

22 Fight 3 1.58 0.01 30 Rain 1 1.02 0.05
31 Helico-

pter -1.99 0.00 31 Helico-
pter 1.75 0.00

35 Plane
crash 1.37 0.03 32 Count-

down 1.46 0.01

36 Engine
failure 1.99 0.01 38 Thunder-

storm 1.79 0.07

37 Bike
wreck 1.11 0.15 40 Phone

1 2.13 0.00

38 Thunder-
storm -2.83 0.00 43 Alarm 1.86 0.03

41 Clock -1.42 0.01 44 Slotma-
chine 1.99 0.00

43 Alarm -1.45 0.02 47 Harp 1.88 0.00
45 Walking 2.09 0.00 48 Bach 1.03 0.07
49 Choir -1.14 0.24 49 Choir 1.76 0.01

Amount of SEs 18 Amount of SEs 18

annotations’ distribution of the IADS dataset is not
available but, instead, only the corresponding mean
and σ values are provided, Z-Tests are applied. The
results of these tests show that 10 out of 18 (55.55%)
sound events have significantly different values for each
affective dimension, with significance level (p value) set
to 0.01. If p is raised to 0.05 then there are 13 out of 18
(72.22%) sound events for each category that portray
a significant difference at their ratings and if further
increment of p is used, i.e. 0.1, then there are 14 out of
18 (77.77%) for arousal and 15 out of 18 (83.33%) for
valence. Thus, the obtained ratings of sound events that
have Da(i′) and Dv(i′) values above the unity margin
can be considered different from the IADS dataset.

From these, only 4 (for i′=1, 2, 7 and 38) are anno-
tated with the next (or previous) SAM arousal figure,
whereas the remaining are annotated with the immedi-
ate next or previous rate. In addition, the semantic con-
tent of sound events in Table 5 cannot be systematically
grouped, since it ranges from animals and erotic actions
to crashes and musical content. Thus, no exact relation
of the semantic content can be indicated for explaining
this divergence of annotation values. In overall, it can
be concluded that, no significant variations are observed
on the arousal affective dimension annotation between
the two tests under comparison.

Focusing on valence, the mean of Dv(i′) and |Dv(i′)|
values are 0.38 and 0.84 respectively. 18 sound events

exhibit a value of |Dv(i′)| ≥ 1, while only 1 imposes
a difference value above 2. These are listed in Table 5
along with their semantic content description. Clearly,
only 1 of them is annotated at a distance of 1 SAM
figure and an intermediate state (compared to the orig-
inal IADS sound) and 17 at a distance of 1 intermediate
state. Moreover, the semantic content of these 17 sound
events appears non-correlated; hence, no indication of a
potential impact of the semantic content to the valence
rating can be concluded.

Summarizing the above outcomes, the arousal and va-
lence ratings demonstrated a relative coherence between
the sound events located at θ(1)=0o and the original
IADS dataset. The results of the performed hypothesis
tests indicate that the obtained values significantly vary
from the IADS ones and thus they can be considered
as not emerging from potential statistical deviations
imposed by the obtained amount of annotations per
sound event. Since the only difference applied between
the sound waveforms of the above datasets is binaural
processing, this fact is likely to imply that the spatial
information attached on the IADS dataset introduces
a slight variation of listener’s arousal and valence. On
a first investigation, this variation seems to indicate
that by considering sound source spatial positioning,
we can adjust the affective ratings of the IADS sounds
to a more realistic perspective: in real-world, all sound
events do demonstrate such information; however the
original IADS dataset does not include it. Thus, by
incorporating the previously excluded – but important
– sound spatial position information to the dataset
possibly leads to more realistic, revised annotations.

Through a more detailed view though and taking into
account the spread of the sound sources, two groups
can be identified within the S′a(1) dataset. One with
sound events emanated from point-like sources and the
second containing sound events which demonstrate pure
ambient characteristics. In [44] it is reported that the
perceived spread of the sound source influences the
elicited emotion, and in particular “Fear”. Focusing
on the utilized dataset, from Table 3 it can be seen
that narrowing the perceived width of the source, i.e.
applying binaural processing and reproducing the cor-
responding sound event through headphones and not
from a set of loudspeakers, can result in a reduced
mean arousal and increased valence. This arousal vari-
ation conforms well with the results obtained in [44],
especially for the sound events that emanate from a
localized point sound source (such as a dog or a rattle
snake with i′ index equal to 2 and 7 respectively).
On the other hand, there are sound events, like rain
(i′ = 30), tropical forest (i′ = 9) and thunderstorm
(i′ = 38) which are the only ones among the S′a(k)
dataset that exhibit pure ambient sound characteristics.
Thus, although the affective annotations made here
can be considered to adjust the corresponding ratings
obtained from the original IADS dataset, for the three
ambient–like sound events described above, this adjust-
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Fig. 4. Scatter plot for the VA values of the original IADS
and S′a(1) datasets.

ment cannot be considered as a realistic one.
But does the above subjective annotation adjust-

ment result into variations in the affective state of the
listener? This question is rather important, since it
designates the significance of the obtained subjective
annotation adjustments for θ(1)=0o. This question can
be addressed by mapping the above measured anno-
tation differences to the raised emotions, as they are
modeled in the VA space. Hence, a further quantita-
tive examination can be performed that associates the
derived arousal and valence differences shown in Ta-
ble 5 with possible emotional variations implied by the
valence/arousal affective model. Specifically, following
the fact analyzed in Section 2.1 that existing MER and
MIR works map only the quadrants of the VA space to
different emotions, this investigation regards whether
the measured arousal and valence values, for 0o, lay
within the same VA space quadrant with the IADS
ones.

Figure 4 illustrates these values obtained in the cases
of the sound events listed in Table 5. From this Figure
it can be outlined that for 0o only 4 sound events (with
i′ = 1, 2, 28 and 38) demonstrate values of arousal
and valence that are in different quadrants from the
corresponding ones in the IADS dataset. Furthermore,
there are 7 sound events (for i′ equal to 4, 7, 8, 9, 16, 22
and 36) whose arousal values are in different quadrants
compared to Aa[s(i′ + f(i))] and 5 more (with i′ equal
to 27, 29, 30, 31 and 40) whose valence values lay within
a different quadrant compared to Av[s(i′+f(i))]. Thus,
from a total of 30 unique sound events in Table 5, 16
are found to alter the listener’s emotional state.

Abridging the above outcomes, the encompass of
spatial information to the utilized sound events results
into slightly altered values for arousal and valence.
Although the new values could be considered as more
realistic and representative of a real-world sound event
representation, the emotional state of the listener is
not significantly affected for the majority of the sound
events in the employed dataset.

TABLE 7
Statistics of the |φ(i′, k)| and |−→va(i′, k)| values for the

SEs included into C1 and C2

Class 1 Class 2
|φ(i′, k)| |−→va(i′, k)| |φ(i′, k)| |−→va(i′, k)|
k = 2 (angular transition 0o → 45o)

Max 78.24 2.06 179.06 3.36
Min 1.71 0.76 102.76 0.26
Mean 35.46 1.53 149.37 1.30
σ 28.44 0.51 25.50 0.79

k = 3 (angular transition 45o → 90o)
Max 79.94 2.71 180.00 1.92
Min 5.57 0.29 90.00 0.22
Mean 43.60 1.22 135.36 1.10
σ 25.35 0.70 29.44 0.58

k = 4 (angular transition 90o → 135o)
Max 82.41 1.92 180.00 2.73
Min 0.00 0.14 95.71 0.31
Mean 43.54 0.93 140.82 1.37
σ 27.11 0.59 28.33 0.75

k = 5 (angular transition 135o → 180o)
Max 90.00 2.59 176.19 2.48
Min 5.87 0.28 91.83 0.35
Mean 43.33 1.30 135.01 1.10
σ 29.67 0.68 28.63 0.65

5.2 VA variation with source location alteration
A close examination of the VA vectors magnitudes and
angles presented in Table 4 can reveal three different
classes of sound events, depending on the arousal and
valence variation trends observed as θ(k) increases:

1) Class 1 (C1), which includes sound events rated
with higher arousal and lower valence values

2) Class 2 (C2), which includes sound events rated
with lower arousal and higher valence values

3) Class 3 (C3), which includes all sound events that
do not fall into the above two cases

Table 6 lists the sound events included in C1 and C2
for all spatial transitions followed by their VA vector
parameters. Obviously, there are sound events which
cannot be assigned exclusively to either C1 or C2 classes
as k increases, since they interchangeably move from
one class to the other. In contrast, there are sound
events that do belong to C1 or C2, exhibiting a sys-
temic alteration of the received emotional annotations.
Figure 5 illustrates the number of sound events included
in C1 or C2 and their union C1+C2 (expressed as the
percentage relative to the total amount of the IADS
waveforms included in the binaural sound corpus) as the
sound source is moving from the front to the back side
of the listener. Clearly, there is a trend of population
increment for classes C1 and C2 as θ(k) increases. In
addition, there is likely no indication that the semantic
content has any effect on the resulting values since in
each of the classes the corresponding semantic contents
are fairly different.

The statistics of the VA vectors’ absolute angle and
magnitude for classes C1 and C2 for all θ(k) cases
are shown in Table 7. For all angular transitions,
most sound events alter Ad

a[sb(i′, k)] and Ad
v[sb(i′, k)]

almost inversely analogously, i.e. a decrement on one
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TABLE 6
Sound events included in class C1 and C2 for all k

i′ Semantic content φ(i′, k) |−→va(i′, k)| i′ Semantic content φ(i′, k) |−→va(i′, k)|
Class 1 Class 2

k=2 (angular transition from 0o to 45o)
9 Tropical -78.24 1.44 3 Baby 144.58 1.31
21 Fight 2 -60.95 1.14 5 Bees 126.05 1.18
22 Fight 3 -23.20 1.90 7 Rattlesnake 136.90 1.04
35 Plane crash -28.07 1.89 8 Robin 174.68 2.60
45 Walking -1.71 0.76 10 Erotic fem 1 179.06 1.36
50 Electricity -20.62 2.06 15 Male cough 143.51 1.44

16 Couple sneeze 105.48 0.80
19 Vomit 121.15 1.52
20 Whistling 175.36 0.26
23 Victim 159.01 1.23
26 Writing 175.96 1.11
28 Paint 104.04 0.52
30 Rain 1 168.02 0.34
31 Helicopter 1 152.88 0.84
36 Engine failure 162.65 2.00
38 Thunderstorm 171.87 0.94
42 Cuckoo 160.35 0.83
43 Alarm 151.78 2.58
44 Slot machine 2 171.23 3.36
49 Choir 102.76 0.78

k=3 (angular transition from 45o to 90o)
2 Dog -79.94 1.27 6 Chickens 173.93 0.53
3 Baby -7.99 0.74 13 Male laugh 93.84 1.02
5 Bees -18.71 0.60 17 Man wheeze 133.78 1.48
8 Robin -36.43 1.09 20 Whistling 118.07 0.27
12 Boy laugh -60.95 0.74 21 Fight 2 150.86 1.44
15 Male cough -71.57 1.36 27 Horse race 180.00 0.64
25 Typewriter -57.69 0.56 28 Paint 90.00 0.63
26 Writing -35.33 1.49 29 Sink 169.77 1.02
32 Countdown -60.26 0.38 30 Rain 1 91.70 1.02
34 Wind -71.57 1.19 31 Helicopter 1 107.65 0.58
36 Engine failure -31.86 2.71 33 Car horns 134.88 1.78
39 Explosion -27.31 1.96 35 Plane crash 142.68 1.41
43 Alarm -5.57 1.72 37 Bike wreck 169.58 1.92
45 Walking -71.57 0.29 40 Phone 1 144.46 0.22
49 Choir -17.20 2.20 41 Clock 129.62 1.90

50 Electricity 135.00 1.68
k=4 (angular transition from 90o to 135o)

6 Chickens 0.00 1.92 8 Robin 142.79 0.59
12 Boy laugh -82.41 0.27 10 Erotic fem 1 135.00 0.31
19 Vomit -54.46 0.78 13 Male laugh 95.71 0.71
20 Whistling 0.00 0.14 18 Male sneeze 106.77 1.48
24 Creep -55.30 0.28 25 Typewriter 136.23 1.00
29 Sink -35.80 1.07 26 Writing 122.35 1.33
30 Rain 1 -64.71 1.14 31 Helicopter 1 99.46 1.52
34 Wind -25.02 0.61 32 Countdown 121.26 2.08
35 Plane crash -77.47 0.69 33 Car horns 171.47 0.36
37 Bike wreck -22.09 1.73 36 Engine failure 164.05 1.32
41 Clock -33.69 1.56 38 Thunderstorm 174.39 2.61
43 Alarm -70.02 1.46 39 Explosion 152.41 2.73
50 Electricity -45.00 0.47 40 Phone 1 134.47 1.10

42 Cuckoo 175.96 1.25
47 Harp 180.00 2.11

k=5 (angular transition from 135o to 180o)
7 Rattlesnake -17.44 1.86 2 Dog 164.05 1.27
13 Male laugh -15.54 1.96 3 Baby 91.83 1.57
16 Couple sneeze -14.62 0.28 5 Bees 176.19 2.15
17 Man wheeze -87.99 0.52 6 Chickens 141.99 1.25
18 Male sneeze -42.88 1.45 8 Robin 141.51 1.22
20 Whistling -66.64 0.62 19 Vomit 141.67 0.52
21 Fight 2 -5.87 0.81 22 Fight 3 106.70 0.46
24 Creep -82.57 0.37 26 Writing 93.18 0.38
25 Type writer -6.30 1.56 30 Rain 1 172.57 0.97
28 Paint -19.98 1.17 34 Wind 129.92 1.95
29 Sink -15.22 2.34 35 Plane crash 148.57 0.72
31 Helicopter 1 -71.39 2.59 37 Bike wreck 172.98 2.48
32 Countdown -38.66 2.05 43 Alarm 103.84 0.81
33 Car horns -75.96 1.55 45 Walking 118.24 0.80
38 Thunderstorm -61.75 0.69 46 Cork pou 148.57 0.75
39 Explosion -20.03 1.48 50 Electricity 108.43 0.35
41 Clock -60.26 1.07
47 Harp -30.26 1.54
48 Bach -90.00 0.70
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Fig. 5. Percentage of the population of classes C1, C2
and C1+C2 as θ(k) increases

dimension (e.g. arousal or valence) is analogous to the
increase to the other. Thus, as the source moves towards
the boundaries, or even outside of the listener’s field
of view both arousal and valence component demon-
strate a rather systematical change. This indication
is strengthen when the source moves outside of the
listener’s field of view, i.e. to 135o and 180o, where the
percentage of sound events allocated to classes 1 and 2
reaches up to 70%.

But why this assignment to classes is important?
And why is it examined here? Considering the distri-
bution of verbal description of emotions proposed by
the circumplex model of affect, certain areas of the VA
space can be mapped to specific emotions or group of
emotions [40], [41]. Hence, the systematic differentiation
of the −→va(i′, k) vectors can reveal a tendency for the
alteration of the annotated emotions for sound events
in C1 and C2 for the aforementioned particular emo-
tions/group of emotions. Moreover, following [26] and
as it is shown in Figure 2, it is highly unlike for a listener
to experience low valence (i.e. highly dislike) without
feeling activated (i.e. high arousal).

Taking into account the above analysis, the members
of C1 and C2 demonstrate a clear −→va(i′, k) placement
and direction trend towards specific areas in the VA
space. Sound events in C1 exhibit the likelihood to have
new −→va(i′, k) values in the 2nd quadrant or to elicit
emotion that is located counterclockwise comparatively
to the previous ones. On the other hand, the −→va(i′, k)
vectors for the C2 class members tend to move towards
the 4th quadrant, thus raising emotions located clock-
wise relatively to the previous ones.

More specifically, considering sound events in C1 and
for all k cases, an increment of the Ad

a[sb(i′, k)] value
is combined with an equal decrement in Ad

v[sb(i′, k)].
This is in conformance with the findings in [44] and
can be analyzed further: As k increases, the maximum,
minimum and mean absolute angle values also increase.
This fact demonstrates that as the source is moving
from the front of the listener towards lateral positions,

TABLE 8
Mean Arousal and Valence vector components for C1

and C2 as k increases

Arousal Valence Arousal Valence
C1 C2

k = 2 1.25 0.89 -1.12 0.66
k = 3 0.88 0.84 -0.78 0.77
k = 4 0.67 0.64 -1.06 0.87
k = 5 0.95 0.89 -0.78 0.78

the receiver’s valence exhibits an increased effect of
alteration up to the maxima of the angular transition
of 45o → 90o. From that maxima and further (i.e. for
greater k values), the alteration in the affective state of
the listener is more focused on his arousal. Due to the
lack of a global quantitively association for the values in
the VA space with verbal descriptions of emotions, no
analytical relation between the sound events in C1 and
the resulting emotions can be established. Nevertheless,
the combination of vectors’ magnitudes and absolute
angle values can reveal the variance with angular tran-
sitions of the annotation using the SAM method. Based
on the mean values of |φ(i′, k)| and |−→va(i′k)| presented
in Table 7, Table 8 shows the corresponding Ad

a[sb(i′, k)]
and Ad

v[sb(i′, k)] VA vector components for C1 as k
increases. Clearly, there is a significant difference of
the arousal’s and valence’s variations when the source
is moving towards the back of the listener, with an
increased impact on the listener’s affective state when
the source is exactly behind him.

Summarizing the analysis for C1, sound events as-
signed to this class tend to alter the listener’s arousal
slightly more than his valence especially when the
source is located at the lateral limits and beyond of
his field of vision. In addition, the changes of the
emotional state are oriented towards the high arousal
and low valence quadrant of the VA space, resulting
into emotions verbally described with words assigned
to the 2nd quadrant or with words located near to the
valence axis (for 3rd and 4th quadrants) or near to the
high values portion of arousal axis (for the 1st quadrant
case). Thus, sound events in C1 are likely to activate the
listener and make him feel less pleasant, especially when
they are located exactly behind him.

Sound events in C2 present a rather similar behavior
with those in C1 in respect to the resulting listener’s
emotional state but for the opposite quadrant. Table 7
shows that their mean effect to the elicited emotional
state is oriented slightly towards arousal. In particular,
they exhibit a mean absolute angle value close to 135o.
The partial components Ad

a[sb(i′, k)] and Ad
v[sb(i′, k)]

of the mean VA vectors, for all angular transitions are
shown in Table 8: sound events in C2 do not impose
notable differences on arousal or valence. Instead, their
mean impact on both VA space dimensions is rather the
same and demonstrates a decrease as the source moves
towards the locations that are outside of the listener’s
field of vision. In addition, sound events in C2 receive
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affective annotations that are towards high valence and
low arousal values (i.e. laying within the 4th quadrant of
the VA space) or values that are close to a) the valence
axis when the emotional annotation falls into the 1st

or 2nd quadrant and b) the low values of the arousal
axis for affective annotations in the 3rd one. Again
the lack of an exact mapping of verbal descriptions
of emotions to VA space cannot allow an analytical
investigation of the connection between emotions and
angular transitions. What can be inferred though is that
sound events in C2 are increasing the listener’s pleasure
and decrease his activation.

Recapitulating the above discussion, clearly there
are sound events that impose a systematic effect on
the listener’s emotional state as the source is moving
towards the lateral limits of his field of vision. This
change is either an increased activation combined with
lowered pleasantness or an increased pleasantness inte-
grated with a lowered activation. The amount of events
that can be assigned to either C1 of C2 is increasing
with the angular position k. In addition, when the
source is located exactly at the rear of the listener,
the amount of the events that cause increased arousal
and lower valence is greater than the amount of the
sound events that demonstrate increased valence and
decreased arousal. The alteration of −→va(i′, k) seems to
be coherent in both classes, since the σ values for
|φ(i′, k)| have a maximum limited to 29.67o. To clarify
the latter claim, the small σ values for |φ(i′, k)| indicate
that the changes of arousal and valence for both classes
result in values focused to a small and concentrated area
in the VA space, i.e. 2nd and 4th quadrant for the first
and second class respectively, and are not dispersed.

5.3 Musical sound events ratings
Table 9 summarizes the arousal and valence values for
those sound events that have musical content, showing a
significant change in valence, especially when the source
is located in lateral positions. Thus, the listener feels
more pleasant when the sound source moves from just
in front of him towards his side. In particular, a common
peak of valence is observed at 45o (k = 2). This fact can
be partially related with the widely-employed encoding
forms for immersive music reproduction, that aim to
locate music sound sources within an expanded spatial
field in the front of the listener. But when the source
is located at 90o or more (i.e. for k ≥ 3), a relatively
unusual case for common music panning mixes, not
all musical sound events demonstrate an increment in
valence.

Moreover, for k values equal to 3 and 4, the sound
events that continue to impose increased valence are a
musical instrument playing (harp), or a musical piece
excerpt (Bach). The one that does not exhibit the same
trend in valence annotation is a singing voice (choir).
This observation may also rely on existing listening
conventions: in typical music reproduction setups, the

TABLE 9
a(i′, k) and v(i′, k) values for music sound events.

k
Sem. content i′ 1 2 3 4 5

a(i′, k)
Harp 47 2.78 3.85 4.78 2.67 4.00
Bach 48 5.00 5.31 4.75 5.50 5.86
Choir 49 4.57 4.40 6.50 5.86 5.43

v(i′, k)
Harp 47 5.56 7.39 7.45 7.45 6.67
Bach 48 6.38 7.62 6.37 6.80 6.10
Choir 49 5.14 5.90 5.25 5.14 4.43

singing voice is panned in the vicinity of 0o. Thus,
its virtual placement in extreme lateral positions may
lower the pleasantness of the receiver. This trend of
valence increment is not valid for all musical sound
events when the source is located exactly at the back
side of the listener. Finally, the arousal values seem
not to indicate an observable, systematic behavior with
either semantic content or different k values.

6 Conclusions
In the work at hand we investigate the potential relation
of the spatial position (taking into account 5 different
angles between the listener and the source which cover
the right half of the horizontal plane) of a sound event
to the elicited emotion of the listener. Does the location
of the sound source alter the affective state of a listener?
And if yes, what is the difference in the emotional
state as the source is moving around the listener? Is
there any relation with the listener’s field of vision?
Although the relation between sound (and particularly
music) and emotions is the particular topic of interest
for many existing studies, forming answers to these
simple questions that focus on the affective impact of
spatial position of generalized sound events is definitely
limited. Thus, this work aims to contribute to the
research foundations in the field of emotion recognition
from general sounds.

This contribution is threefold: apart from the main
exploration of the potential relation of emotions and
spatial source positioning, we also developed an emo-
tionally annotated and spatially–varied sound events
database, which can be employed as the ground–truth
dataset in future investigations, and provide a basis for
emotionally enhanced sound design for multimedia and
computer applications. The aforementioned dataset was
formed through binaural processing of the IADS pre–
annotated dataset that originally consists of 167 sound
events. The final sound corpus included sound events
located at 5 different spatial positions, effectively cov-
ering the entire horizontal plane. This binaural sound
corpus is emotionally annotated through a series of
online subjective evaluation experiments using a custom
web platform specifically developed for the needs of
the presented work. With the announcement of the
experiments through international mailing lists, sub-
jects originating from all over the world participated,



15

thus suppressing the impact of the potential cultural
differences on the subjective ratings. International par-
ticipation was confirmed by the different domain origins
of the email addresses submitted during the applied
login process.

The analysis of the set of annotations obtained re-
veals various, multilevel outcomes. For example, one
conclusion regards the sound events emotional anno-
tation itself. In particular, short–range differences are
obtained between the original IADS annotations and
the ones derived in the case of placing the sound
source in the front of the listener. Since spatial posi-
tion represents an inherent characteristic of a sound
event, which is naturally and automatically communi-
cated to the listener, the presence of this information
to the emotional annotation can be considered that
adjusts the annotation results in order to accurately
meet real–world acoustic conditions. There is one issue
that regards sound events perceived as emanating from
spread sources and that it is related to whether spatial
positioning is an important physical parameter for such
events. Further investigation is needed in order to fully
resolve this question risen for these particular sound
events, since other effects can also alter the annotated
emotional states (e.g. lab versus no–lab conditions,
etc.).

It was also observed that the majority of the binaural
sound events impose a specific trend to the elicited emo-
tional state of the receiver. This trend can be analyzed
in two categories with respect to the movement of the
sound source from the front to the rear side of the
listener: events which increase the arousal and decrease
the valence of the listener and vice versa. This reveals
that the movement of the source has a rather systematic
effect on the listener’s arousal and valence and tends
to result in emotions that correspond to either the
2nd or 4th quadrants of the VA space or in emotions
located near the VA axes. Nevertheless, due to the wide
spread of the semantic content of the sound events in
the original IADS dataset, a focused investigation on
the possible relation between the semantic content, the
affective state of the listener and the source’s spatial
position could not be examined. Towards this aim,
future work may focus on the creation of emotionally
annotated datasets from online sound databases that
include sound events with similar semantic content (e.g.
findsounds [45]).

The work at hand can be considered as a starting
point that offers a useful set of evidences about the
relation of sound events placement around the listener
and the elicited emotions, under a limited set of spatial-
ization parameters (i.e. angular variation limited at the
half of the horizontal plane, constant distance and no di-
rectional sound source parameterization). Further work
is clearly needed towards the complete exploration of
the impact of source’s spatial position on the listener’s
emotional state, taking into account all the above spa-
tial conditions. For example, from a non–technical, but

psychological point of view, the assumption made on
the symmetry of the derived binaural signals on the
two halves of the horizontal plane should by carefully
reconsidered, due to the measured asymmetry in the
perception of emotional stimuli through dichotic lis-
tening between the two brain hemispheres [48], [50].
The potential impact of the semantic content represents
an additional approach. An extension of the current
work may also consider sound source placement in
three dimensions, taking into account the vertical plane.
Another approach may incorporate more complicated
affective models with additional dimensions (such as
valence, arousal and dominance). Finally, the employ-
ment of a cloud source platform may provide significant
advantages in the process of extending the developed,
emotionally annotated binaural dataset.

Being a significant part of auditory interfaces, an
affective-driven sonification/sound design process is ex-
pected to provide the means for delivering more realistic
interfaces in a wide range of application fields were
auditory representation and feedback is essential for
conveying information. Under this perspective, the in-
vestigation of the relation of spatial position of everyday
sound events to the elicited emotions may offer new
principles and guidelines for sound designers that are
involved in the process of developing authentic and
immersive digital environments, such audio-only, video
and serious games, virtual worlds and augmented real-
ity applications.

References
[1] K. Drossos, A. Floros, and N.-G. Kanellopoulos, “Affec-

tive acoustic ecology: Towards emotionally enhanced sound
events,” in Proceedings of the 7th Audio Mostly Conference:
A Conference on Interaction with Sound. ACM, 2012, pp.
109–116.

[2] K. R. Scherer, “Appraisal theory,” in Handbook of Cognition
and Emotion, T. Dalgleish and M. J. Power, Eds. West
Sussex, England: John Wiley & Sons Ltd., 1999.

[3] K. Drossos, R. Kotsakis, G. Kalliris, and A. Floros, “Sound
events and emotions: Investigating the relation of rhythmic
characteristics and arousal,” in Information, Intelligence,
Systems and Applications (IISA), 2013 Fourth International
Conference on, 2013, pp. 1–6.

[4] P. N. Juslin and P. Laukka, “Communication of emotions in
vocal expression and music performance: different channels,
same code?” Psychological Bulletin, vol. 120, no. 5, pp. 770–
814, Sep. 2003.

[5] J. Sanghoon, S. Rho, B.-j. Han, and E. Hwang, “A fuzzy
inference-based music emotion recognition system,” in Visual
Information Engineering, 2008. VIE 2008. 5th International
Conference on, 2008, pp. 673–677.

[6] Z. Shiliang, T. Qi, J. Shuqiang, H. Qingming, and G. Wen,
“Affective mtv analysis based on arousal and valence fea-
tures,” in IEEE International Conference on Multimedia and
Expo, 2008, 2008.

[7] K. F. MacDorman, S. Ough, and C.-C. Ho, “Automatic
emotion prediction of song excerpts: Index construction,
algorithm design, and empirical comparison,” Journal of
New Music Research, vol. 36, no. 4, pp. 281–299, 2007.

[8] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. Chen, “A regression
approach to music emotion recognition,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 16, no. 2,
pp. 448–457, 2008.



16

[9] A. P. Oliveira and A. Cardoso, “Modeling affective content of
music: A knowledge base approach,” in 5th Sound and Music
Computing Conference, Jul. 2008.

[10] W. L. Cheung and G. Lu, “Music emotion annotation by
machine learning,” in Multimedia Signal Processing, 2008
IEEE 10th Workshop on, 2008, pp. 580–585.

[11] F. Weninger, F. Eyben, B. W. Schuller, M. Mortillaro, and
K. R. Scherer, “On the acoustics of emotion in audio: What
speech, music and sound have in common,” Frontiers in
Psychology, vol. 4, pp. 1–12, May 2013.

[12] M. Marcell, M. Malatanos, C. Leahy, and C. Comeaux,
“Identifying, rating, and remembering environmental sound
events,” Behavior Research Methods, vol. 39, no. 3, pp. 561–
569, 2007.

[13] K. Wassermann, K. Eng, P. F. M. J. Verschure, and J. Man-
zolli, “Live soundscape composition based on synthetic emo-
tions,” MultiMedia, IEEE, vol. 10, no. 4, pp. 82–90, 2003.

[14] N. Moustakas, A. Floros, and N. Grigoriou, “Interactive
audio realities: An augmented / mixed reality audio game
prototype,” in Audio Engineering Society Convention 130,
May 2011.

[15] P. Shah, S. Grant, and W. Chapin, “Calibration and 3-d
sound reproduction in the immersive audio environment,”
in Multimedia and Expo (ICME), 2011 IEEE International
Conference on, 2011, pp. 1–6.

[16] T. Garner and M. Grimshaw, “A climate of fear: considera-
tions for designing a virtual acoustic ecology of fear,” in Pro-
ceedings of the 6th Audio Mostly Conference: A Conference
on Interaction with Sound. ACM, 2011, pp. 31–38.
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