
Sound Events and Emotions: Investigating the Relation of Rhythmic Characteristics
and Arousal

Konstantinos Drossos∗, Rigas Kotsakis†, George Kalliris†
and Andreas Floros∗∗Audiovisual Signal Processing Laboratory

Dept. of Audiovisual Arts, Ionian University, Corfu, Greece
Email: kdrosos@ionio.gr, floros@ionio.gr

†Laboratory of Electronic Media
Dept. of Journalism and Mass Communication, Aristotle University of Thessaloniki, Thessaloniki, Greece

Email: rkotsakis@gmail.com, gkal@jour.auth.gr

Abstract—A variety of recent researches in Audio Emotion
Recognition (AER) outlines high performance and retrieval
accuracy results. However, in most works music is considered as
the original sound content that conveys the identified emotions.
One of the music characteristics that is found to represent a
fundamental means for conveying emotions are the rhythm-
related acoustic cues. Although music is an important aspect
of everyday life, there are numerous non-linguistic and non-
musical sounds surrounding humans, generally defined as
sound events (SEs). Despite this enormous impact of SEs to
humans, a scarcity of investigations regarding AER from SEs is
observed. There are only a few recent investigations concerned
with SEs and AER, presenting a semantic connection between
the former and the listener’s triggered emotion. In this work
we analytically investigate the connection of rhythm-related
characteristics of a wide range of common SEs with the arousal
of the listener using sound events with semantic content. To
this aim, several feature evaluation and classification tasks are
conducted using different ranking and classification algorithms.
High accuracy results are obtained, demonstrating a significant
relation of SEs rhythmic characteristics to the elicited arousal.

Keywords-Audio Emotion Recognition; Sound Events;
Arousal; Rhythm Related Features; Audio Emotion Classifi-
cation

I. INTRODUCTION

Music is likely to be one of the primary audiovisual
means used to express and convey emotions by extend-
ing and mimicking voice’s characteristics [1]. Its impact
on listeners’ emotions is being throughly studied through
various disciplines, like Music Emotion Recognition (MER),
Music Psychology and Music Information Retrieval (MIR).
Focusing on the former one, currently published emotion
recognition accuracy results are likely to imply a connection
between sound’s technical characteristics and the conveyed
emotions [2].

One of the main components in MER is the affective
model employed for describing emotions in a qualitative
manner. In the literature, two abstract affective model cate-
gories are defined, namely the discrete and the continuous
models [3]. The former ones assign specific verbal de-

scriptions for particular emotions, like “Happiness”, “Fear”,
“Sadness” etc. The models that belong to the second cat-
egory consider emotions as a resultant of two or more
emotional states, illustrated as continuous values [4], [5].
Typical choices for the above emotional conditions are
the Arousal and Valence, the employment of which result
into a two dimensional affective space [3]. The consequent
emotion can be described either as the ensuing vector from
the combination of the aforementioned values or with a
verbal description from the discrete category. The mapping
of the discrete verbal categories to continuous values is
performed through clustering of the latter categories’ values,
as presented for example in [2].

Ordinary acoustic cues used for MER typically include
features related with the measured energy, timbre, tonality
and the rhythm characteristics of the music signal [3].
Moreover, additional technical characteristics have been
associated with the conveyance of specific emotions, e.g.
dissonance, mode and loudness [5]. Focusing particularly
on the arousal dimension, there are published works stating
a direct relation between arousal and energy or rhythm of a
musical piece [2], [6].

Music appears to be only a segment of the heard
sounds [3], since there are numerous non-linguistic and non-
musical sounds that comprise an acoustic environment, de-
fined as sound events (SEs) [7]. These events communicate
to the human listener information regarding attributes of the
source and its surroundings, such as the size, direction and
speed of the source and/or the nature of the sound production
mechanism, or even the texture of the adjacent surfaces [8].
In addition, there is the possibility for the SEs to carry
also semantic content [3]. Conveyed information can have
an impact on listener’s perception and thus can affect his
emotion [3].

This work focuses on emotion recognition from SEs.
More specifically, as a starting investigation point, we ex-
amine the influence of sound events rhythm characteristics
on the listener’s arousal. Towards this aim, the continuous
model was employed in order to avoid introducing addi-



tional complexity of the verbal descriptions of emotions
and their interpretation. The selection of the rhythm char-
acteristics was based on the fact that the connection of
rhythm with arousal is also supported by many psychological
researches [5], [6]. For this cause, we use the only existing,
to the best of authors’ knowledge, SEs database with pre-
annotated affective data, the International Affective Digi-
tal Sounds (IADS) [9]. In particular, we extracted several
rhythm related features, using the MIR Toolbox [14], and
performed feature evaluation and data classification, with
WEKA software [16], in order to evaluate the selected
features and, in parallel, to examine the possibility of correct
identification of arousal from SEs using only rhythm-related
characteristics.

The rest of the paper is organized as follows: Section II
contains a brief overview of existing researches related to
the aim of the present work. Next, Section III outlines the
methodology and the experimental procedure followed for
deriving the obtained results that are analytically presented
in Section IV. Finally, Section V concludes this work.

II. RELATED RESEARCH

As mentioned previously, there is only a small number
of published works investigating emotion recognition from
SEs. In the majority of them, the continuous model approach
is considered. In a recent research [10], an accuracy of nearly
62% for arousal and 50% for valence is reported. These
results were obtained by employing non-annotated SEs and
four (4) human annotators. Features regarding low level de-
scriptors of sound, voicing related characteristics, statistical,
regression and local minima and maxima functionals were
used. For the classification process, automated regression
was employed. In addition, other researches have employed
the IADS data base which incorporates a connection be-
tween the semantic content of the SEs and the conveyed
emotion [3]. In these works, various technical features were
used, such as the timbral, energy and rhythm characteristics
of sound. For the classification task, Support Vector Machine
(SVM) and Artificial Neural Network (ANN) were utilized,
along with the arousal and valence dimensions for affective
modeling.

At a larger research extent, focusing on music-only
content, existing MER and MIR approaches exhibit rela-
tive high accuracy results for emotion recognition. Typical
classification results can reach up to 85% [2]. Moreover,
SVM [11], Gaussian Mixture Model (GMM) [2] and Deci-
sion Trees [12] are frequently utilized as common classifi-
cation schemes. In particular, commonly employed features
in MIR and MER include timbral, rhythmic, pitch and
energy related technical characteristics [2], [11]–[13]. As
far as affective models are concerned, both discrete and
continuous models are employed in MIR and MER [3].
Although continuous models tend to offer the ability for
clustering the resulting values according to specified verbal
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Figure 1. fs distribution for the used data set

descriptions of emotions (if needed), discrete models seem
to be preferred, due to their ability for targeted emotion de-
piction, for example in terms of arousal and valence listener
rating against “Fear” and “Happiness” verbal descriptions
[3]. Nevertheless, the usage of discrete models seems to
introduce an discontinuity between researches due to the po-
tential consideration of different verbal descriptions for the
same emotion, e.g. “Joy” - “Enjoyment” and “Cheerfulness”
- “Happiness” [1].

III. EXPERIMENTAL PROCEDURE

In brief, the experimental procedure followed consisted of
five stages, namely the a) data pre-processing, b) arousal val-
ues clustering, c) feature extraction, d) features’ evaluation,
and e) classification using the features extracted in stage
(b). The IADS data set employed provides a total of 167
sounds with emotional annotation for the arousal, valence
and dominance dimensions. All signal pre-processing and
feature extraction tasks were performed using the MIR
Toolbox [14]. Finally, for the features’ evaluation and clas-
sification, the WEKA environment was used [16].

A. Data Pre-Processing

The IADS database includes sounds with different sam-
pling frequencies (fs). In order not to introduce any ad-
ditional artificial information, the original sounds’ fs was
retained in all tests. The distribution of the different fs
values within the data set is illustrated as a histogram in
Figure 1. All sounds were also peak-normalized prior to
any further processing, in order to avoid any perceptual side
effects introduced from different signal level amplitudes.

For each sound waveform, 6 additional copies were cre-
ated, resulting in a total set of 167×7 SEs. Next, the sounds
were clustered in seven groups. Each group contained a
single copy of each sound. Thus, the complete test data
set was formed in terms of 7 clusters of 167 unique sound
events. For each group, the values presented in Table I were



used in order to segment the SEs’ waveforms in shorter time
frames. Frames’ overlap was 20% and hamming windowing
function was used for all groups .

Table I
SOUNDS CLUSTERS AND FRAMES’ TIME LENGTH

Group Frame length (sec)
1 0.8
2 1.0
3 1.2
4 1.4
5 1.6
6 1.8
7 2.0

The lowest value of 0.8 seconds was chosen due to
the inability of calculating the complete set of features
(analytically presented in the following subsection) when
smaller frame lengths are utilized. Moreover, the maximum
value of 2.0 seconds was used as higher frame lengths were
found to obscure any details in the variation of the rhythm
related features. Finally, 20% frame overlap was employed
as one of the most widely employed window overlap values.

B. Arousal values clustering
The emotional annotation over the IADS data set was

performed using the Self Assessment Manikin (SAM)
method [15]. This method applied annotation scores within
the range [1, 9] for each SE. In practice, arousal annotated
values in the IADS data set range from 2.88 to 8.16.
The distribution of annotated arousal values is depicted in
Figure 2. In order to use these values as nominal classes in
the classification process, a clustering scheme was applied.
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Figure 2. The arousal values distribution in the IADS SEs data base

Two groups of values were created with values below or
higher/equal to the half of the maximum annotation’s value,
i.e. 9/2 respectively. The amount of SEs corresponding to
each cluster can be seen in Table II. Each group was used
as a separate class in the classification process.

Table II
THE AMOUNT OF SOUND EVENTS FOR EACH GROUP

Group Amount of sound events
1 24
2 143

C. Feature Extraction

Feature extraction was performed using the segmented
SEs copies presented in Section III-A. The complete list
of the extracted features is presented in the first column of
Table III. This process resulted in a cluster of values for each
sound of each group. Subsequently, for each feature’s values
and for all sounds in all groups, the statistical measures
presented in Table III were calculated. The resulting values
were divided by the total length of the corresponding SE.
This lead to a 26 dimensions feature space for each sound
in each group.

Table III
THE EXTRACTED FEATURES & STATISTICAL MEASURES

Extracted Features Statistical Measures
Beat spectrum Mean
Onsets Standard deviation
Tempo Gradient
Fluctuation Kurtosis
Event density Skewness
Pulse clarity

The aforementioned statistical measures were used as
a means to univocally describe variation’s characteristics
for each feature along the time axis, corresponding to the
sequential sound frames. In addition, the impact of the
differences in time lengths of the original sound data were
minimized by the ratio of the statistical measure and the
total number of sound samples in the original signal.

D. Features’ information evaluation

Prior to features’ evaluation, an initial correlation analysis
was conducted, in order to examine dependencies and reveal
cross-correlations between the extracted features. Due to the
paper’s limited length, a letter/identifier was assigned to
each of the 26 extracted features for further reference, as
presented in Table IV.

Features’ correlation matrix, shown in Table V, clearly
portrays that the extracted features are relatively uncorre-
lated, as most of the cross-correlation factors appear values
around zero. Therefore, the whole extracted feature set
was utilized for the classification task. The investigation of
classification efficiency for the presented features, regard-
ing SEs and the respective impact and contribution, was
examined for each feature. This formulated a descending
order feature vector. The evaluation of the 26 features for
each window length was conducted with the utilization of
two different WEKA ranking algorithms, namely the ”Info-
GainAttributeEval” and the ”SVMAttributeEval” [16]. The



Table IV
REPRESENTED FEATURE SET

Feature Letter Feature Letter
beatspectrumstd A onsetskurtosis N
eventdensitystd B beatspectrumskewness O

eventdensityskewness C pulseclaritygradient P
onsetsgradient D beatspectrumkurtosis Q

fluctuationkurtosis E pulseclaritykurtosis R
beatspectrumgradient F eventdensitykurtosis S

eventdensitymean G beatspectrummean T
tempomean H eventdensitygradient U

pulseclaritystd I pulseclaritymean V
fluctuationmean J onsetsmean W
fluctuationstd K pulseclarityskewness X

fluctuationskewness L onsetsstd Y
onsetsskewness M fluctuationgradient Z

former evaluates the importance of each attribute separately
by estimating the information gain with respect to the class
using entropy metrics from Information Theory. The latter
represents an SVM technique that examines the efficiency
of each feature while assigning each class separately [16].
Table VI exhibits the feature ranking for both algorithms
and for each frame length.

E. Classification

Three different training algorithms were employed in the
classification task, namely: ANN implementations, Logis-
tic Regression (LR) and the K-Nearest-Neighbor (KNN)
technique. Their performance results were compared in
order to determine the most efficient classification method.
Multilayer perceptrons with one or more hidden layers,
based on linear and sigmoid activation functions, are often
utilized in semantic analysis problems, providing increased
classification rates and achieving the formulation of efficient
generalization rules and conclusions [17], [18]. In the exper-
iments of the current work Artificial Neural Systems (ANS)
with a network topology that included two sigmoid hidden
layers and a linear output layer were implemented.

LR, on the other hand, is a statistical training technique
that has been exploited during supervised implementations
and which forms a non-linear regression model that re-
lates the classification decision to the output probability
result [17], [19]. Finally, KNN is a popular heuristic al-
gorithm for immediate classification results that compares
the attributes of each new instance to the attributes of
the already classified instances, determining the k nearest
similarities and classifying the sample to the respective
class of the k − neighbors [20]. Several experiments were
carried out before deriving the optimal selection of k = 5
neighbors. It also has to be noted that during the experiments
performed, additional training models were tested, like linear
regressions, decision trees structures and SMO algorithm,
but the classification rates were below 70%.

During the training process of the above classification
algorithms, the k−fold validation technique was employed.

It is an iterative method that divides the whole set of input
instances in k subsets and uses k − 1 subsets for training
purposes and the remaining set for testing the developed
model. Since the total number of input samples is a prime
number (167), the selected number of folds were selected
to be k = 3, 8, 24, which are the nearest integer multiples
of 168, in order to equally, as possibly, divide the initial
sample set. The 8−fold and 24−fold validations offer the
balanced segmentation of the input instances, while 3−fold
validation favors the generalization potentials of the classi-
fication scheme with limited number of iterations. Finally,
167 − fold validation (Leave-One-Out - LOO technique)
was employed, in order to utilize the maximum number of
input samples in the process of developing the classification
model. The classification performance/recognition rate of
each algorithm is defined as the ratio of the number of
correctly classified instances to the total number of input
instances, deriving from the correspondent confusion matri-
ces. Table VII presents the obtained classification rates for
all the frame lengths considered.

IV. RESULTS & DISCUSSION

As Table V shows, there is a relative un-correlation of
the features. Thus, the total feature set can be considered as
valuable and no feature can be omitted in the classification
process. Regarding classification’s results, from Table VII
it can be seen that considerable variations in the evaluation
results have been derived by both methods, while utilizing
different temporal windows. The lowest accuracy score ob-
tained was 71.26%. On the other hand, the highest accuracy
score was 88.37%, justifying the notion that the rhythm of
a sound stimulus can affect the arousal of the listener. This
observation also illustrates that the connection of rhythm and
arousal is also applicable to SEs and not only music. More
specifically, LR exhibits the highest classification accuracy,
regardless frame length and the number of folds. Its accuracy
ranges from 81.44%, when 1 second frame length and
3 − fold was used, up to 88.37%, obtained for 1 second
frame lengths under the LOO technique. KNN depicts the
second highest classification performance and ANS the third.

Considering the used features, it can be observed that in
most evaluation results in Table VI two groups are formed,
dividing the feature set in clusters of 13 features, for both
utilized evaluation algorithms. In particular, for the case
that the highest accuracy was observed (1 second frame
lengths), the highest 13 features were A, B, D, E, F, I,
J, K, L, M, R, S and W. This fact implies that the most
informative feature was rhythm’s periodicity at the auditory
channels (fluctuation) [14]. The second most informative
feature was the onsets in the signal, followed by event
density, beat spectrum and pulse clarity. Since the test
data considered consisted of sounds with different semantic
content, the above results also show that the impact of



Table V
FEATURE CORRELATION MATRIX

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 1.0 0.3 -0.1 0.0 0.1 -0.7 0.0 0.1 0.3 0.2 0.1 0.2 0.0 -0.1 0.1 -0.1 -0.3 -0.1 -0.1 -0.6 -0.1 0.1 -0.1 0.0 0.2 0.2
B 0.3 1.0 -0.1 0.1 -0.1 -0.2 0.6 -0.1 0.2 0.0 0.0 -0.1 -0.3 -0.3 0.0 -0.1 -0.1 -0.2 -0.3 -0.1 0.0 0.3 0.2 0.1 0.3 0.0
C -0.1 -0.1 1.0 -0.1 0.1 0.0 -0.4 -0.2 0.1 -0.2 -0.3 -0.1 0.3 0.2 0.2 0.1 -0.2 0.1 0.5 0.0 -0.1 -0.1 -0.3 0.1 0.1 -0.3
D 0.0 0.1 -0.1 1.0 -0.1 -0.1 0.1 0.1 -0.2 0.0 0.1 0.0 -0.2 -0.1 -0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.0 0.1 0.1 0.0 -0.1
E 0.1 -0.1 0.1 -0.1 1.0 0.0 -0.2 0.0 0.1 -0.1 0.0 0.8 0.2 0.2 0.0 -0.1 0.0 0.1 0.1 0.0 -0.1 -0.3 -0.2 0.0 0.1 -0.1
F -0.7 -0.2 0.0 -0.1 0.0 1.0 0.0 -0.1 -0.2 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.5 0.0 -0.1 0.0 0.0 -0.1 0.0
G 0.0 0.6 -0.4 0.1 -0.2 0.0 1.0 0.1 -0.1 0.0 0.1 -0.3 -0.6 -0.4 -0.1 0.0 0.0 -0.2 -0.2 0.1 0.1 0.5 0.7 0.0 -0.3 0.1
H 0.1 -0.1 -0.2 0.1 0.0 -0.1 0.1 1.0 -0.1 0.0 0.0 -0.1 0.1 0.0 -0.1 0.1 0.0 0.1 -0.1 0.0 0.0 0.2 0.0 -0.2 -0.2 0.0
I 0.3 0.2 0.1 -0.2 0.1 -0.2 -0.1 -0.1 1.0 0.0 -0.2 0.1 0.2 0.1 0.2 -0.1 -0.1 -0.3 0.1 -0.2 -0.1 0.0 -0.3 -0.1 0.2 0.0
J 0.2 0.0 -0.2 0.0 -0.1 0.0 0.0 0.0 0.0 1.0 0.9 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 -0.4 -0.1 0.0 0.0 -0.1 -0.1 0.7
K 0.1 0.0 -0.3 0.1 0.0 0.1 0.1 0.0 -0.2 0.9 1.0 0.2 -0.1 0.0 -0.1 0.0 0.1 0.1 0.0 -0.2 -0.1 0.1 0.1 -0.1 -0.1 0.7
L 0.2 -0.1 -0.1 0.0 0.8 0.0 -0.3 -0.1 0.1 0.1 0.2 1.0 0.3 0.2 0.0 -0.1 0.0 0.1 0.0 -0.1 -0.2 -0.3 -0.4 0.0 0.2 0.1
M 0.0 -0.3 0.3 -0.2 0.2 0.0 -0.6 0.1 0.2 0.1 -0.1 0.3 1.0 0.6 0.2 -0.1 -0.1 0.0 0.1 -0.2 -0.2 -0.3 -0.9 0.1 -0.1 0.0
N -0.1 -0.3 0.2 -0.1 0.2 0.1 -0.4 0.0 0.1 0.1 0.0 0.2 0.6 1.0 0.0 0.0 0.1 0.1 0.1 0.0 -0.1 -0.2 -0.5 0.1 -0.4 0.0
O 0.1 0.0 0.2 -0.1 0.0 0.1 -0.1 -0.1 0.2 0.0 -0.1 0.0 0.2 0.0 1.0 -0.1 -0.5 -0.1 0.1 -0.4 -0.1 0.0 -0.2 0.1 0.1 -0.1
P -0.1 -0.1 0.1 0.1 -0.1 0.0 0.0 0.1 -0.1 0.0 0.0 -0.1 -0.1 0.0 -0.1 1.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 -0.1 -0.1 0.0
Q -0.3 -0.1 -0.2 0.1 0.0 0.2 0.0 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1 -0.5 0.1 1.0 0.1 0.1 0.4 0.0 0.0 0.1 -0.2 -0.1 0.1
R -0.1 -0.2 0.1 0.1 0.1 0.1 -0.2 0.1 -0.3 0.0 0.1 0.1 0.0 0.1 -0.1 0.0 0.1 1.0 0.0 0.1 0.1 -0.2 0.0 0.1 0.0 0.0
S -0.1 -0.3 0.5 0.0 0.1 0.1 -0.2 -0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 1.0 0.1 0.0 -0.2 -0.1 -0.1 0.0 0.0
T -0.6 -0.1 0.0 0.0 0.0 0.5 0.1 0.0 -0.2 -0.4 -0.2 -0.1 -0.2 0.0 -0.4 0.0 0.4 0.1 0.1 1.0 0.0 0.1 0.2 0.0 -0.1 -0.2
U -0.1 0.0 -0.1 0.5 -0.1 0.0 0.1 0.0 -0.1 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 0.1 0.0 0.1 0.0 0.0 1.0 -0.1 0.1 0.1 0.0 0.0
V 0.1 0.3 -0.1 0.0 -0.3 -0.1 0.5 0.2 0.0 0.0 0.1 -0.3 -0.3 -0.2 0.0 0.0 0.0 -0.2 -0.2 0.1 -0.1 1.0 0.4 -0.3 -0.2 0.1
W -0.1 0.2 -0.3 0.1 -0.2 0.0 0.7 0.0 -0.3 0.0 0.1 -0.4 -0.9 -0.5 -0.2 0.1 0.1 0.0 -0.1 0.2 0.1 0.4 1.0 -0.1 -0.3 0.1
X 0.0 0.1 0.1 0.1 0.0 0.0 0.0 -0.2 -0.1 -0.1 -0.1 0.0 0.1 0.1 0.1 -0.1 -0.2 0.1 -0.1 0.0 0.1 -0.3 -0.1 1.0 0.1 -0.2
Y 0.2 0.3 0.1 0.0 0.1 -0.1 -0.3 -0.2 0.2 -0.1 -0.1 0.2 -0.1 -0.4 0.1 -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.2 -0.3 0.1 1.0 0.0
Z 0.2 0.0 -0.3 -0.1 -0.1 0.0 0.1 0.0 0.0 0.7 0.7 0.1 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 -0.2 0.0 0.1 0.1 -0.2 0.0 1.0

Table VI
FEATURE RANKING. w IS THE FRAME LENGTH IN SECONDS AND ORDER OF APPEARANCE IS THE ORDER OF THE FEATURES (TOP IS FIRST)

w=0.8s w=1.0s w=1.2s w=1.4s w=1.6s w=1.8s w=2.0s
InfoGain SVMA InfoGain SVMA InfoGain SVMA InfoGain SVMA InfoGain SVMA InfoGain SVMA InfoGain SVMA

D Z R K M K S J Q J N K A K
F J I M X J F K G K I Z W J
C K D J L F Z B V L X J Q E
N L A W G W C G H E S E Y L
E I B E P I H E X W M L N G
M G S L N A W L M N H Y P B
K B J F F E B I L Y J W E X
Z F K I K X J F J G K I K W
J C M D J L K Z K V Z X J Q
G D L R A M L S N Q Y N B A
B E F B E P I H Y X W M X N
L M W S W N G W E M E H L P
I N E A I G E C W H L S G Y
R O H P Y B O V R S U T U T
T P Z N Z R D X D A R F O H
Q W Y C C D R Y T F V Q D M
A X Q G U Q P A I Z B O Z I
S Y X U O V T N C O G P R S
H V T O S T Q M P B C A C F
W U C V D H Y U F U Q D M V
O T P Z B Z V D S D T R T O
P Q N Y R C X R A T F V H D
V R O H T Y M O B R A U F U
U S V X H O U T U C D G V R
X H G T Q S A Q Z P O C I C
Y A U Q V U N P O I P B S Z

rhythm in listener’s arousal can be independent from the
meaning, in language or logic, of sound.

V. CONCLUSIONS AND FUTURE WORK

In this work the impact of the rhythmic characteristics
of generalized sound events (SEs) on the listener’s arousal
is evaluated as a starting point for the exploration of the
relation between non-musical sound environments and the
conveyed emotions. Towards this aim, SEs were used as a
comprehensive form of sound whereas the focus on arousal
and rhythm-related characteristics was performed according

to their connection in music, as it is already stated in the
literature. The IADS sound set was used, as an annotated
SEs data base, along with the MIR Toolbox for feature
extraction and the WEKA environment for feature evaluation
and classification. The feature set considered consisted of
26 features, whereas two ranking algorithms, namely the
“InfoGainAttributeEval” and the “SVMAttributeEval” were
used.

The results obtained show a relatively high accuracy for
the arousal recognition when solely rhythm related features



Table VII
PERFORMANCE RESULTS, w IS THE FRAME LENGTH IN SECONDS

Algorithm 3-fold 8-fold 24-fold LOO
ANS 76.65% 77.84% 79.04% 80.84%

w = 0.8 LR 83.83% 85.03% 85.63% 85.63%
KNN 82.05% 84.43% 85.03% 85.03%
ANS 78.44% 79.04% 79.64% 81.02%

w = 1.0 LR 81.44% 86.23% 87.21% 88.37%
KNN 83.23% 83.23% 83.23% 84.43%
ANS 76.65% 77.96% 77.96% 80.02%

w = 1.2 LR 85.63% 85.63% 85.63% 85.72%
KNN 84.43% 85.03% 85.63% 85.63%
ANS 71.26% 76.05% 77.32% 78.25%

w = 1.4 LR 85.63% 85.63% 85.63% 85.63%
KNN 84.43% 83.83% 83.83% 83.83%
ANS 75.45% 77.84% 80.24% 81.32%

w = 1.6 LR 85.63% 85.63% 85.63% 85.63%
KNN 85.63% 85.03% 85.63% 85.63%
ANS 77.25% 80.24% 82.63% 84.57%

w = 1.8 LR 85.63% 85.63% 86.45% 87.71%
KNN 85.03% 85.03% 85.03% 85.03%
ANS 77.84% 76.65% 78.25% 79.32%

w = 2.0 LR 85.63% 85.63% 85.63% 86.04%
KNN 83.83% 85.03% 85.03% 85.03%

are used. Moreover, signal’s fluctuation was identified as
the most informative feature regarding arousal recognition.
The accuracy of the recognition process can be furthered
examined with the utilization of different groups of features,
as they are formed from the results of the present work. In
addition, a further examination for the arousal recognition
regarding SEs should be performed with the usage of
additional timbre or energy-related features. Finally, since
arousal represents a single component of affective modeling,
valence recognition should be also attempted in order to
provide an overall assessment of the mechanism that allows
SEs to convey emotions.
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